### **New Therapies Used in Renal Failure**

Received: 11 February 2023, Revised: 13 March 2023, Accepted: 17 April 2023

#### Rani Ravina<sup>1</sup>, Garg Yukta<sup>2</sup>, Jindal Diksha<sup>3</sup>, Patil H.C<sup>4</sup>, Patil R. K<sup>5</sup>

1,2 Pharm.D (Student), Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda goyalraveena7@gmail.com

3Associate Professor, Department Pharmaceutical Chemistry, AIPBS, AU, Bathinda

4Professor & Principal, Department of Pharmacy Practice, Adesh Institute of Pharmacy & Biomedical Sciences, AU, Bathinda 5Professor, Department of Pharmacy Practice, Adesh Institue of Pharmacy & Biomedical Sciences, AU, Bathinda rkpatil3014@gmail.com

#### **Keywords**:

Renal function, Extracellular, Kidney, Prevalence, metabolic

#### Abstract

Acute renal failure affects all organ systems, which is characterized by a sudden loss of renal function, and causes abnormalities in the control of acid-base balance, electrolytes, and divalent captions as well as extracellular fluid balance. The absolute mortality rates for ARF acquired in hospitals and intensive care units are roughly 45% and 70%, respectively, despite significant advancements in organ support devices during the previous 20 years. Additionally, the quality of life has been proposed as a beneficial addition to clinical outcome measures because it can independently predict dialysis patients' death and length of hospitalization. There are also chances of differences in the prevalence if there is difference in the survival or lifetime duration if ailment is diagnosed.

#### 1. Introduction

A condition with numerous underlying causes, renal failure has hazardous results on all organ systems. ARF, which is characterized by decrease in glomerular filtration, causes abnormalities in the control of acidbase balance, electrolytes, and divalent captions as well as extracellular fluid balance. However, the hallmarks of ARF include an elevated serum creatinine concentration, buildup of waste products, and frequently a reduction in urine output. The absolute mortality rates for ARF acquired in hospitals and intensive care units are roughly 45% and 70%, respectively, despite significant advancements in organ support devices during the previous 20 years. However, over the past two decades, the demographics of ARF have shifted, with patients typically being older and having a higher intensity of illness according to different scoring systems. The end phase of chronic kidney disease is characterized by clear decline in kidney function. The inability of metabolic waste to be removed on its results in electrolyte imbalance and a variety of poisoning symptoms. The incidence rate of ESRD rises yearly as the population ages. Even with ongoing advancements in medical technology, the death rate is still significant. In practical practice, renal replacement therapy is frequently utilized for ESRD.

ISSN: 2309-5288 (Print) ISSN: 2309-6152 (Online) CODEN: JCLMC4

Electrolyte imbalance and a variety of poisoning symptoms come from metabolic waste not being able to be eliminated on its own. Because of population aging, ESRD incidence rates are increasing annually. Even with continual medical technology improvements, there are still a lot of deaths. In reality, ESRD patients frequently receive renal replacement treatment.

Additionally, the mode of renal replacement therapy affects the quality of life differently. It is a concept that incorporates economic, social, psychological, and physical aspects as crucial measures for assessing the prognosis of ESRD patients. Additionally, the quality of life has been proposed as a beneficial addition to clinical outcome measures because it can independently predict dialysis patients' death and length of hospitalization.

Up until recently, it has been difficult to determine how non-medical elements evaluated by preferencebased measures affect standard of living of ESRD subjects. Therefore, to increase life anticipation and



improve standard of living, it is essential to identify the appropriate treatment strategy and associated variables. Here, we assessed how three alternative therapies affected the standard of living of ESRD subjects and the associated influencing factors, offering a theoretical framework for the choice of therapeutic approaches.

Extended discussion of CKD criteria is generally irrelevant for clinical practice due to the less prospectivepossibility for patients given the drugs and lack of advanced predictive tools. The criteria could need to be adjusted if further harmful or costly treatment are introduced or if superior indicators of improvement emerge.

#### **Risk Factors**

It is divided into two parts:

- 1. Modifiable through medical treatment or through lifestyle changes risk factors
- 2. Non Modifiable risk factor



#### 2. Epidemiology

Main causes of death and suffering in the present century is Chronic Kidney Disease. Subjects such as older patients, women, diabetic and obese patients are found to have higher prevalence of Chronic Kidney Disease. According to recent study 843.6 million has been affected by this ailment in the 2017 year. It has been emerged as the larger problem in countries with lower and medium per capita income. Although it is a non communicable disease but it has been seen as the increasing cause of mortality in the last 20 years. There is presently no significant data on the time required for detection of the Acute Renal Failure if we apply the criteria of chronicity. There is very few data available that studies the prevalence of the Chronic Kidney Disease over time. However increase in the prevalence is not linear. There is increase in the cases of chronic kidney disease but there is prevent control on the hypertension in the past few years. There are also chances of differences in the prevalence if there is difference in the survival or lifetime duration if ailment is diagnosed.

#### SYMPTOMS



#### DIAGNOSIS

In recent studies, it has been studied that glomerular filtration rate and creatinine levels in the serum have curvilinear relation with each other. Due to this condition there has been reduction in detecting the early phases of renal failure. Urinary proteins and the albumin excretion are generally increased whereas glomerular filtration rate is decreased in the scenario of Chronic Kidney Disease.

Some diagnosis include the saliva urea nitrogen levels in determining the presence of chronic kidney disease using the dip stick method. Epidermal growth factor receptor estimation equations utilize factors such as age, gender, ethnicity, and body size as imprecise surrogate measures of muscle mass variance across populations in an attempt to capture the variability in creatinine produced by muscle mass. Other dip stick test are also used which found out the high levels of blood,pus, bacteria and sugar by inserting into the urine.

The growth of the disease and the complications associated with it can be minimized if it is detected early.



#### STAGES OF KIDNEY DISEASES:

It is divided into five parts that has been given below:



| PHASES   | FUNCTION                            |
|----------|-------------------------------------|
| Phase 1  | RFT normal and no impairment kidney |
| Phase 2  | Mild impairment                     |
| Phase 3  | Mild to Moderate Impairment         |
| Phases 4 | Moderate to Severe Impairment       |
| Phases 5 | Renal Disease                       |

#### TREATMENT OF CKD

### RENIN–ANGIOTENSIN–ALDOSTERONE SYSTEM

Lewis et al. were the first to demonstrate that angiotensin-converting enzyme inhibitors were helpful in delaying the course of diabetic nephropathy in 1993.Several laboratories conducted animal research.They are, however, particularly helpful in reducing the steady decline of GFR in CKD.The disease state mainly examined with these drugs has been diabetic nephropathy. In both kind of diabetes, reducing the speed of growingkidney damage adjoining RAAS suppression are linked to proteinuria stabilization or reduction.These results have been shown in patients with microalbuminuria and

macroalbuminuria.

#### **Diuretic Drugs**

Furosemide is a loop diuretic and vasodilator that can reduce metabolism. Furthermore, diuretics may reduce the toxins in the tubules. such as hemoglobin.Furosemide, according the to hemodynamic criterion, should avert the Acute Renal Failure. There is no solid proof that furosemide modifies the natural course of Chronic KidneyFailure in humans. Recent studies have not founded any difference in azotemia or death. However it was believed that thiazide diuretics have loss their efficacy in the low glomerular filtration rate, but recent studies have proved that chlorthalidone reduces blood pressure in subjects with Chronic Kidney Disease

# Journal of Coastal Life Medicine

A BALL

| S.N<br>o. | Class                                           | Drugs                                                   |                                                    | Pharmacokinetics                                                                                                                  | Bioavailabili<br>ty                                                              | Duration of action                                                                                      | Uses                                                                            |
|-----------|-------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1.        | 1. High Furosemide<br>ceiling<br>diuretics      |                                                         | Furosemide is<br>absorbed orally over<br>2-3 hours | The<br>Bioavailabili<br>ty of<br>furosemide<br>id 60%                                                                             | 3-6 hours                                                                        | Edema,<br>Acute pulmonary<br>edema, Cerebral<br>edema, Hypertension,<br>Hypercalcaemia of               |                                                                                 |
|           |                                                 | Bumetanide                                              | 2                                                  | absorbed orally                                                                                                                   | bioavailabili<br>ty is 80-<br>100%                                               | 4-6 hours                                                                                               | manganancy                                                                      |
|           |                                                 | Torasemide                                              | ;                                                  | Torasemide is<br>absorbed orallyand<br>more rapid                                                                                 | Bioavailabili<br>ty is 50-90%                                                    | 4-8 hours                                                                                               |                                                                                 |
| 2.        | Thiazid                                         | Hydrochlorothiazid<br>e<br>Chlorthalidone               |                                                    | All thiazides and<br>realted drugs are<br>well absorbed<br>orally.                                                                | Bioavailabili<br>ty is 50-75%                                                    | 6-8 hours                                                                                               | Diabetes insipidus<br>,Hypercalciuria,Hypert<br>ension, Edema                   |
|           | e and<br>related<br>diuretics                   |                                                         |                                                    |                                                                                                                                   |                                                                                  |                                                                                                         |                                                                                 |
|           |                                                 | Metolazone                                              |                                                    |                                                                                                                                   |                                                                                  |                                                                                                         |                                                                                 |
|           | Xipamide<br>Indapamide                          |                                                         |                                                    |                                                                                                                                   |                                                                                  |                                                                                                         |                                                                                 |
|           |                                                 |                                                         |                                                    |                                                                                                                                   |                                                                                  |                                                                                                         |                                                                                 |
|           |                                                 | Clopamide                                               |                                                    | -                                                                                                                                 |                                                                                  |                                                                                                         |                                                                                 |
| 3.        | Carboni<br>c<br>anhydra<br>se<br>inhibitio<br>n | Acetazolamide                                           |                                                    | Absorbed orally                                                                                                                   | Bioavailabili<br>ty is 70-90%                                                    | 8-12 hours                                                                                              | Glaucoma, To<br>alkalinizethe urine,<br>Mountain sickness,<br>Period paralysis. |
| 3.        | Potassiu<br>m<br>Sparing<br>Diuretic<br>s       | Aldostero<br>ne<br>antagonis<br>t                       | Spiron<br>olacton<br>e<br>Eplere<br>none           | Highly bound to<br>plasma proteins and<br>complete<br>metabolized in liver<br>to generate active<br>metabolized , is<br>Canrenone | Bioavailabili<br>ty of<br>Aldosterone<br>antagonist is<br>75%                    | 1-2 hours                                                                                               | Heart failure, Primarry<br>Hyperaldosteronism,<br>Edema,Hypertension            |
|           |                                                 | RenalTriamtepithelialerenesodiumchannelinhibitorsAmilar | Triamt<br>erene                                    | Incompletely<br>absorbed                                                                                                          | Bioavailabili<br>ty of Renal<br>epithelial<br>sodium<br>channel<br>inhibitors is | Triamterene<br>duration of<br>Action 6-8<br>hours and<br>Amiloride<br>duration of<br>Action 20<br>hours |                                                                                 |
|           |                                                 |                                                         | Amilor<br>ide                                      |                                                                                                                                   |                                                                                  |                                                                                                         |                                                                                 |

## Journal of Coastal Life Medicine

| 4. | Osmotic  | Mannitol | Isosorb | Mannitol        | not | Bioavailabili | 0.5-1.5 hours | Head injury          | ,stroke,  |
|----|----------|----------|---------|-----------------|-----|---------------|---------------|----------------------|-----------|
|    | Diuretic |          | ide and | absorbed orally |     | ty is         |               | Reduce intra         | ocular or |
|    | S        |          | glycer  |                 |     |               |               | intracranialtensions |           |
|    |          |          | ol      |                 |     |               |               |                      |           |
|    |          |          |         |                 |     |               |               |                      |           |

#### 3. Lipid-Lowering Therapy

Although higher lipid levels forbid to induce major renal illnessin and of itself, it may give rise to the suggestion of Chronic Kidney Failure. Suggested pathways are similar to the damage events that cause atherosclerosis in other arterial beds. Inter capillary cells are prompted to employ phagocytic cells in the presence of lipids through building of signal proteins. Activated Inter Capillary cells and accumulating phagocytic cells then produce oxygen radical species, which result in oxidatedless solid lipoproteins. It has been demonstrated that oxidized low-density lipoproteins trigger proinflammatory and profibrotic cytokines.

#### Reference

- Ammirati, A. L. (2020). Chronic kidney disease. *Revista* da Associação Médica Brasileira, 66, s03-s09.
- [2] Beldhuis, I. E., Lam, C. S., Testani, J. M., Voors, A. A., Van Spall, H. G., Ter Maaten, J. M., &Damman, K. (2022). Evidence-based medical therapy in patients with heart failure with reduced ejection fraction and chronic kidney disease. *Circulation*, 145(9), 693-712.
- [3] Ebert, T., Pawelzik, S. C., Witasp, A., Arefin, S., Hobson, S., Kublickiene, K, &Stenvinkel, P. (2020). Inflammation and premature ageing in chronic kidney disease. *Toxins*, 12(4), 227.
- [4] Elhoseny, M., Shankar, K., &Uthayakumar, J. (2019). Intelligent diagnostic prediction and classification system for chronic kidney disease. *Scientific reports*, 9(1), 9583.
- [5] Forbes, A., & Gallagher, H. (2020). Chronic kidney disease in adults: assessment and management. *Clinical Medicine*, 20(2), 128.
- [6] Gur, E., Levy, D., Topaz, G., Naser, R., Wand, O., Kitay-Cohen, Y& Cohen-Hagai, K. (2022). Disease severity and renal outcomes of patients with chronic kidney disease infected with COVID-19. *Clinical and Experimental Nephrology*, 26(5), 445-452.

#### 4. Advancement in Therapies

#### Pirfenidone's

Pirfenidone's an antifibrotic synthetic chemical that seemed as a viable therapy for Chronic Kidney Disease. Precise method of activity is uncertain, pirfenidone's actions appear to be exaggerated by disruptions in the Transforming growth factor beta. Pirfenidone's dramatically reduced Inter capillarynetworkgrowth in a test model of diabetic nephropathy, regardless of changes in glucose levels. Similar effects have been obtained in post-adaptive focal segmental glomerulosclerosis rat models.

- [7] Janse, R. J., Fu, E. L., Dahlström, U., Benson, L., Lindholm, B., van Diepen, M & Savarese, G. (2022). Use of guideline-recommended medical therapy in patients with heart failure and chronic kidney disease: from physician's prescriptions to patient's dispensations, medication adherence and persistence. *European Journal of Heart Failure*, 24(11), 2185-2195.
- [8] Liyanage, T., Toyama, T., Hockham, C., Ninomiya, T., Perkovic, V, Woodward, M & Jun, M. (2022). Prevalence of chronic kidney disease in Asia: a systematic review and analysis. *BMJ* global health, 7(1), e007525.
- [9] Levey, A. S. (2022). Defining AKD: the spectrum of AKI, AKD, and CKD. *Nephron*, *146*(3), 302-305.Kovesdy, C. P. (2022). Epidemiology of chronic kidney disease: an update 2022. *Kidney International Supplements*, *12*(1), 7-11.
- [10] Lv, J. C., & Zhang, L. X. (2019). Prevalence and disease burden of chronic kidney disease. *Renal fibrosis: mechanisms and therapies*, 3-15.
- [11] Ma, F., Sun, T., Liu, L., & Jing, H. (2020). Detection and diagnosis of chronic kidney disease using deep learning-based heterogeneous modified artificial neural network. *Future Generation Computer Systems*, 111, 17-26.
- [12] Sundström, J., Bodegard, J., Bollmann, A., Vervloet, M. G., Mark, P. B., Karasik&Tangri, N.



(2022). Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2·4 million patients from 11 countries: The CaReMe CKD study. *The Lancet Regional Health–Europe*, 20.Levey, A. S., Grams, M. E., & Inker, L. A. (2022). Uses of GFR and albuminuria level in acute and chronic kidney disease. *New England Journal of Medicine*, 386(22), 2120-2128.

[13] Sperati, C. J., Soman, S., Agrawal, V., Liu, Y., Abdel-Kader, K., Diamantidis, C. J& National Kidney Foundation Education Committee. (2019). Primary care physicians' perceptions of barriers and facilitators to management of chronic kidney disease: a mixed methods study. *PloS* one, 14(8), e0221325.