
JCLMM 1/11 (2023) |1047–1053 

 
 

 
          

 Fuzzification of Simpson’s 1/3 Rule and Development of its 

Computer Program 

Received: 27 October 2022, Revised:  29 November 2022, Accepted: 31 December 2022 

 Dr. Toralima Bora 

 Assistant Professor, Centre for Computer Science and Applications, Dibrugarh University, Dibrugarh, Assam, India 

Author Mail id: toralimabora@gmail.com  

Keywords 

Fuzzification, Simpsons 1/3 rule, Fuzzy Triangular Number. 

Abstract 

Many applications of integral calculus can be found in a variety of disciplines, such as engineering, statistics, finance, 
actuarial science, etc. The evaluation of expressions involving these integrals can occasionally get extremely challenging. 
As a result, numerous numerical methods (such as numerical integration) have been created to make the integral simpler. 
For instance, recent years have seen a focus on Bayesian and empirical Bayesian methods in statistics. Numerical 
integration is used to approximate numerical values that cannot be integrated analytically. Different numerical integration 
methods e.g. Newton-Cotes, Romberg integration, Gauss Quadrature and Monte Carlo integration are used to assess those 

functions that can’t be integrated systematically. Newton-Cotes methods have been used to interpolate polynomials. One 

of the Newton-Cotes methods does not have any restriction on segmentation. But, there must be an even number of 

segments for the Simpson 1/3 rule. In this study an attempt has been made to fuzzify the Simpson 1⁄3 rule and developed 

computer programs for the same. Also, a comparison between the classical and fuzzified Simpson's 1/3 rule has been done. 

 

1. Brief Introduction:  

Integration, according to Kaw and Keteltas, is a 

technique for calculating the area under a function 

that has been graphed. Several professions, 

including engineering, statistics, finance, actuarial 

science, and others, use integral calculus 

extensively. The evaluation of expressions 

involving these integrals can occasionally get 

extremely challenging. As a result, numerous 

numerical methods (such as numerical integration) 

have been created to make the integral simpler. For 

instance, recent years have seen a focus on 

Bayesian and empirical Bayesian methods in 

statistics. Numerical integration is used to 

approximate numerical values that cannot be 

integrated analytically. Different numerical 

integration methods e.g. Newton-Cotes, Romberg 

integration, Gauss Quadrature and Monte Carlo 

integration are used to assess such functions that 

cannot be integrated systematically. Newton-Cotes 

methods interpolate polynomials. One of the 

Newton-Cotes methods does not have any 

restriction on segmentation. But in Simpson's 1⁄3 

rule, the number of subdivision  is  multiple of 2, 

and in Simpson's 3/8 rule, the number of 

subdivision is a multiple of 3. In the Boole’s rule, 

the number of subdivision is multiple of 4 whereas 

in the Weddle’s rule, this number of subdivision is  

multiple of 6. Mettle F.O. et. al developed a new 

Trapezium rule and the numerical integration 

methods having no restriction on the number of 

segmentation1.  

Integrals are significant part of mathematical 

analysis. Integrals are not only effective in 

mathematics analysis, but in other field also. 

However many functions are not possible to 

calculate precisely, that means some functions 

cannot be calculated with analytical mathematical 

methods. Due to these grounds another method was 

established known as numerical integration with 

the intention to find approximate result of required 

integral. As per requirement one can use numerical 

methods, which allows to calculate the result with 

specific error. There are a few basic methods of 

numerical integration such as Trapezoidal rule, 

Simpson’s rule etc. In all the techniques 

approximated value of integral is calculated, but 

with various errors2.  
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Charles A. Thomson conducted research on 

numerical integration techniques for use in 

companion circuit method of transient circuit 

analysis. Numerical integration methods used in 

circuit transient analysis packages may not be the 

most accurate approximations of the actual circuit 

response. This study focuses on these numerical 

integration techniques and their inaccuracy3. 

Li J. made a study on composite trapezoidal rule 

for the estimation of Cauchy principal value 

integral on circle. This paper carried out a research 

on the convergence rate of the trapezoidal rule. It 

has made a conclusion that the super convergence 

rate of the composite trapezoidal rule occurs at 

middle of each subinterval4. 

Zhao W. And Zhang Z. Conducted a studyon  

Trapeziodal Rule based on derivatives for Riemann 

Stieltjes. This discussion focuses on the derivative 

based trapezoidal rule for Riemann Stieltjes 

integral and also investigated the accuracy rate for 

this5. 

Moheuddin et al. compared three numerical 

integration methods namely Trapezoidal rule, 

Simpson’s 1/3 rule and Simpson’s 3/8 rule. In this 

study the rate of precision of these methods has 

been compared using error values of these methods. 

Graphical representations have also been made to 

verify the results. Simpson’s 1/3 rule has been 

found to be the most efficient one among these 

three techniques6. 

In numerical analysis, Simpson’s 1/3 Rule is a 

technique for approximating the definite integral.

  

This study is mainly dealing with Fuzzification of 

Simpson’s 1/3 rule and its computer application 

and comparison of Classical Simpson’s Rule with 

the Fuzzified Simpson’s 1/3 Rule. 

2. Fuzzification of  Simpson’s 1/3 Rule: 

Fuzzification is the conversion of crisp items into 

fuzzy items. Therefore to fuzzify the classical 

Simpson’s 1/3 rule, the values of this technique 

have been replaced by triangular fuzzy number. As 

result of this, the following expression is derived 

for fuzzified Simpson’s 1/3 rule.  

Let 𝑌 = 𝐹(𝑋) be a function. 

∫ 𝐹(𝑋)
𝑋𝑛

𝑋0

𝑑𝑋 =
𝐻

[3,3,3]
[

(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) +

 [2,2,2] × (𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) + [4,4,4] × (𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑑𝑑 𝑜𝑟𝑑𝑖𝑛𝑡𝑎𝑒𝑠)
]

 

=
𝐻

[3,3,3]
[(𝑌0 + 𝑌𝑛) + [2,2,2](𝑌2 + 𝑌4 +⋯) +

[4,4,4](𝑌1 + 𝑌3 +⋯)] 

where 𝑋0 = [𝑋0
′ , 𝑋0

′′, 𝑋0
′′′], 𝑋𝑛 = [𝑋𝑛

′ , 𝑋𝑛
′′, 𝑋𝑛

′′′]  are 

triangular fuzzy numbers and  𝑌0, 𝑌𝑛 are the first 

and the last ordinates and 𝑌1, 𝑌3, … are remaining 

odd ordinates in fuzzy form i.e. 𝑌1 = [𝑌1
′, 𝑌1

′′, 𝑌1
′′′], 

𝑌3 = [𝑌3
′, 𝑌3

′′, 3], ... , 𝑌𝑛−1 = [𝑌𝑛−1
′ , 𝑌𝑛−1

′′ , 𝑌𝑛−1
′′′ ] and 

𝑌2, 𝑌4, … 𝑌𝑛−2 are even ordinates in triangular fuzzy 

number form i.e. 𝑌2 = [𝑌2
′, 𝑌2

′′, 𝑌2
′′′], 𝑌4 =

[𝑌4
′, 𝑌4

′′, 𝑌4
′′′], ... , 𝑌𝑛−2 = [𝑌𝑛−2

′ , 𝑌𝑛−2
′′ , 𝑌𝑛−2

′′′ ] 

The f.m.f. of 𝑌0 , 𝑌1, 𝑌2, 𝑌3, 𝑌4, … , 𝑌𝑛 are respectively, 

µ𝑌0 (𝑋) =

{
 
 

 
 
𝑋 − 𝑌0

′

𝑌0
′′−𝑌0

′ 𝑤ℎ𝑒𝑟𝑒 𝑌0
′ ≤ 𝑋 ≤ 𝑌0

′′

𝑋 − 𝑌0
′′′

𝑌0
′′−𝑌0

′′′ 𝑤ℎ𝑒𝑟𝑒 𝑌0
′′ ≤ 𝑋 ≤ 𝑌0

′′′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 

µ𝑌1 (𝑋) =

{
 
 

 
 

𝑋−𝑌1
′

𝑌1
′′−𝑌1

′ 𝑤ℎ𝑒𝑟𝑒 𝑌1
′ ≤ 𝑋 ≤ 𝑌1

′′

𝑋−𝑌1
′′′

𝑌1
′′−𝑌1

′′′ 𝑤ℎ𝑒𝑟𝑒 𝑌1
′′ ≤ 𝑋 ≤ 𝑌1

′′′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

..... 

µ𝑌𝑛 (𝑋) =

{
 
 

 
 
𝑋 − 𝑌𝑛

′

𝑌𝑛
′′−𝑌𝑛

′
𝑤ℎ𝑒𝑟𝑒 𝑌𝑛

′ ≤ 𝑋 ≤ 𝑌𝑛
′′

𝑋 − 𝑌𝑛
′′′

𝑌𝑛
′′−𝑌𝑛

′′′
𝑤ℎ𝑒𝑟𝑒 𝑌𝑛

′′ ≤ 𝑋 ≤ 𝑌𝑛
′′′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 

and α cut is [𝑌𝑛 ]
𝛼 = [𝑌𝑛

′ + (𝑌𝑛
′′ − 𝑌𝑛

′)α, 𝑌𝑛
′′′ −

(𝑌𝑛
′′′ − 𝑌𝑛

′′)α] 

Similarly the f.m.f. of 𝑋0 , 𝑋1 , … , 𝑋𝑛  are 

respectively  

µ𝑋0 (𝑋) =

{
 
 

 
 
𝑋 − 𝑋0

′

𝑋0
′′−𝑋0

′ 𝑤ℎ𝑒𝑟𝑒 𝑋0
′ ≤ 𝑋 ≤ 𝑋0

′′

𝑋 − 𝑋0
′′′

𝑋0
′′−𝑋0

′′′ 𝑤ℎ𝑒𝑟𝑒 𝑋0
′′ ≤ 𝑋 ≤ 𝑋0

′′′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 

https://en.wikipedia.org/wiki/Numerical_analysis
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µ𝑋1 (𝑋) =

{
 
 

 
 

𝑋−𝑋1
′

𝑋1
′′−𝑋1

′ 𝑤ℎ𝑒𝑟𝑒 𝑋1
′ ≤ 𝑋 ≤ 𝑋1

′′

𝑋−𝑋1
′′′

𝑋1
′′−𝑋1

′′′ 𝑤ℎ𝑒𝑟𝑒 𝑋1
′′ ≤ 𝑋 ≤ 𝑋1

′′′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

..... 

.µ𝑋𝑛 (𝑋) =

{
 
 

 
 

𝑋−𝑋𝑛
′

𝑋𝑛
′′−𝑋𝑛

′ 𝑤ℎ𝑒𝑟𝑒 𝑋𝑛
′ ≤ 𝑋 ≤ 𝑋𝑛

′′

𝑋−𝑋𝑛
′′′

𝑋𝑛
′′−𝑋𝑛

′′′ 𝑤ℎ𝑒𝑟𝑒 𝑋𝑛
′′ ≤ 𝑋 ≤ 𝑋𝑛

′′′

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 

and α cut is [𝑋𝑛 ]
𝛼 = [𝑋𝑛

′ + (𝑋𝑛
′′ − 𝑋𝑛

′ )α, 𝑋𝑛
′′′ −

(𝑋𝑛
′′′ − 𝑋𝑛

′′)α] 

Example 1 Let us evaluate ∫ 𝑒𝑋𝑑𝑋
[3.99,4,4.01]

[−.01,0,.01]
 

Here F(X)= eX and H=[0.99,1,1.01] 

The f.m.f. of H is  

µ𝐻(𝑋) =

{
 
 

 
 
𝑋 − 0.99

1 − 0.99
𝑤ℎ𝑒𝑟𝑒 0.99 ≤ 𝑋 ≤ 1

𝑋 − 1.01

1 − 1.01
𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑋 ≤ 1.01

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 

Let us form a table for the X and Y values 

X Y=F(X) 

X0= -0.01 0 0.01  Y0= 0.99005 1 1.01005 

X1= 0.98 1 1.02   Y1= 2.66446 2.71828 2.77319 

X2= 1.97 2 2.03   Y2= 7.17068 7.38906 7.61409 

X3= 2.96 3 3.04   Y3= 19.298 20.0855 20.9052 

X4= 3.95 4 4.05   Y4= 51.9354 54.5981 57.3975 

 

By fuzzified Simpson’s 1/3 rule 

∫ 𝐹(𝑋)
𝑋𝑛

𝑋0

𝑑𝑋 =
𝐻

[3,3,3]
[

(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) +

 [2,2,2] × (𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) + [4,4,4] × (𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑑𝑑 𝑜𝑟𝑑𝑖𝑛𝑡𝑎𝑒𝑠)
]  

=
𝐻

[3,3,3]
[(𝑌0 + 𝑌4) + [2,2,2] × (𝑌2) + [4,4,4] × (𝑌1 + 𝑌3)] 

Say Y = [51.1884, 53.8557, 56.6776] 

The f.m.f. of Y is  

µ𝑌(𝑋) =

{
 
 

 
 

𝑋 − 51.1884

53.8557 − 51.1884
𝑤ℎ𝑒𝑟𝑒 51.1884 ≤ 𝑋 ≤ 53.8557

𝑋 − 56.6776

53.8557 − 56.6776
𝑤ℎ𝑒𝑟𝑒 53.8557 ≤ 𝑋 ≤ 56.6776

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 

and α cut is [𝑌]𝛼 = [51.1884 + (53.8557 − 51.1884)α, 56.6776 − (56.6776 − 53.8557)α] 

Example 2 Let us evaluate ∫
𝑑𝑋

[1,1,1]+𝑋

[9.99,10,10.01]

[1.99,2,2.01]
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Here F(X)= ∫
𝑑𝑋

[1,1,1]+𝑋

[9.99,10,10.01]

[1.99,2,2.01]
      and H=[0.99,1,1.01] 

The f.m.f. of H is 

µ𝐻(𝑋) =

{
 
 

 
 
𝑋 − 0.99

1 − 0.99
𝑤ℎ𝑒𝑟𝑒 0.99 ≤ 𝑋 ≤ 1

𝑋 − 1.01

1 − 1.01
𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑋 ≤ 1.01

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 

Let us form the table for X and Y 

X Y=F(X) 

X0= 1.99 2 2.01   Y0= 0.332226 0.333333 0.334448 

X1= 2.98 3 3.02   Y1= 0.248756 0.25 0.251256 

X2= 3.97 4 4.03   Y2=  0.198807 0.2 0.201207 

X3= 4.96 5 5.04   Y3=  0.165563 0.166667 0.167785 

X4= 5.95 6 6.05   Y4= 0.141844 0.142857 0.143885 

X5= 6.94 7 7.06   Y5=  0.124069 0.125 0.125945 

X6= 7.93 8 8.07   Y6=  0.110254 0.111111 0.111982 

X7= 8.92 9 9.08   Y7=  0.0992063 0.1 0.100806 

X8= 9.91 10 10.09         Y8=  0.0901713 0.0909091 0.091659 

By fuzzified Simpson’s 1/3 rule 

∫ 𝐹(𝑋)
𝑋𝑛

𝑋0

𝑑𝑋 =
𝐻

[3,3,3]
[

(𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) +

 [2,2,2] × (𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠) + [4,4,4] × (𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑑𝑑 𝑜𝑟𝑑𝑖𝑛𝑡𝑎𝑒𝑠)
]  

=
𝐻

[3,3,3]
[(𝑌0 + 𝑌8) + [2,2,2] × (𝑌2 + 𝑌4 + 𝑌6) + [4,4,4] × (𝑌1 + 𝑌3 + 𝑌5 + 𝑌7)] 

Say Y=[1.27861, 1.29951, 1.32089] 

The f.m.f. of Y is 

µ𝑌(𝑋) =

{
 
 

 
 

𝑋 − 1.27861

1.29951 − 1.27861
𝑤ℎ𝑒𝑟𝑒 1.27861 ≤ 𝑋 ≤ 1.29951

𝑋 − 1.32089

1.29951 − 1.32089
𝑤ℎ𝑒𝑟𝑒 1.29951 ≤ 𝑋 ≤ 1.32089

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 
 

 
 

 

and α cut is [𝑌]𝛼 = [1.27861 + (1.29951 − 1.27861)α, 1.32089 − (1.32089 − 1.29951)α] 
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3. Fuzzified Simpson’s 1/3 Rule Vs Classical 

Fuzzified Simpson’s 1/3 Rule: 

Fifteen examples have been considered to compare 

the fuzzified Simpson 1/3 rule with the classical 

Simpson 1/3 rule. For both the methods, C++ 

programs have been developed. The solutions of 

these examples are calculated by using these 

programs. The outputs have been presented in the 

Table 1 

Table -1 Output of the C++ Program Developed for the Fuzzified Simpson’s 1/3 Rule and Classical Simpson’s 

1/3 Rule 

Sl No Crisp root Fuzzy Triangular Number Defuzzified value 

1 6.387 6.04052, 6.3911, 6.76031  6.39121 

2 0.83567 .784495, 0.8357, .888151 .835785 

3 0.37578 .343622,  0.37589,  .411198 .375996 

4 .74685 .709664,  0.74678,  .784528 .746855 

5 53.8628 51.1884, 53.8557,  56.6776 53.8638 

6 1.82781 1.72676, 1.8277,1.92985 1.82785 

7 0.79528 0.727494, 0.79528, 0.865996 0.795298 

8 1.2986 1.27861, 1.29951, 1.32089 1.29962 

9 0.69326 0.653547, 0.69324, 0.734472 0.693254 

10 0.40251 0.389019, 0.40245, 0.416413 0.402521 

11 0.21451 0.177027, 0.21455, 0.257957 0.214608 

12 0.14508 0.116905, 0.14508, 0.176931 0.145096 

13 0.78165 0.761544, 0.78165, 0.930776 0.781752 

14 0.5203 0.4512, 0.5201, 0.5940 0.5202 

15 0.6668 0.642101, 0.6658,  0.689548 0.666932 

Comparison of Solutions obtained from 

Fuzzified Simpson’s 1/3 Rule and Classical 

Simpson’s 1/3 Rule: 

Appropriate statistical test is used to check whether 

the results obtained by fuzzified Simpson’s 1/3 

Rule are different with the results obtained by the 

classical method. 
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The normality of the results is tested by using box-

plot and K-S test in order to select a proper 

statistical test. The box-plot is presented in Figure 

1. 

 

Figure 1: Box-plot of Simpson’s 1/3 Rule 

From the above box plot it can be concluded that it 

is less likely that the results follow normal 

distribution and to confirm this, K-S test has been 

used. The results of the K-S test are displayed in 

Table 2. 

Table – 2 Results of K-S test  

  

Kolmogorov-Smirnov 

Statistic d.f. p-value 

Classical .448 15 0.0000000050022 

Fuzzy .448 15 0.0000000050023 

 

From Table-2, it can be observed that the results do 

not follow normal distribution since p-value<0.01. 

Now, Wilcoxon-signed rank test (non-parametric 

statistical test) is used to compare whether the 

results obtained by both the methods are 

statistically significant. The results are shown in 

Table 3. 

Table-3 Findings of Descriptive Statistics and Wilcoxon-signed rank test  

  Classical Fuzzy z-value p-value 

Mean 4.63739 4.63739     

Median 0.74686 0.74686     
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Std. Deviation 13.70266 13.70264     

Minimum 0.14510 0.14510     

Maximum 53.86386 53.86380 0.437 0.755 

 

From the outcome of Wilcoxon-signed rank test it 

can be seen that the results are not statistically 

significant since p-value<0.05. So it can be 

observed that the solutions of the mathematical 

problem are more or less same. Finally from this 

study it has been seen that the Simpson’s 1/3 rule in 

its fuzzified as well as classical form gives the 

same results. 
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