Development and Validation of Stability Indicating Assay Method By HPLC for Estimation Of Benzonatate

Received: 19 October 2022, Revised: 16 November 2022, Accepted: 26 December 2022

Ashwini Pritam Shewale and Dr. Mohit Chaturvedi

Department of Pharmacy, Dr. A.P.J. Abdul Kalam University, Indore (M.P.) – 452010

Keywords:

Benzonatate, HPLC, stability indicating methods, Forced degradation

Abstract

Quality, purity, safety and efficacy of pharmaceuticals are important issues in drug therapy. A greater emphasis is being paid today on assurance of the quality and safety of a drug by monitoring and controlling the impurities and degradation products. The control of impurities and degradation products in dosage form became mandatory critical issue since their presence extensively diminishes both quality and safety of Active Pharmaceutical ingredient (API) and its dosage form. By the identification or characterization and quantification of the impurities and related substances, the risk of their impact on drug and its dosage form can be avoided or minimized. Various regulatory authorities like ICH, USFDA, Canadian Drug and Health agency are even emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredient's (API's). A stability indicating hyphenated analytical techniques has been developed and validated for Benzonatate as per International Conference on Harmonization. The Benzonatate standard was exposed to acid hydrolysis, alkali hydrolysis , oxidation , photolytic and thermolytic degradation condition and separated using Column HiQSil C18 (250 ×4.6mm,5 μ) Mobile Phase is Methanol (0.01%), Formic Acid (70:30v/v), Flow rate 1ml/min Column Temperature is Ambient Detector set at 308nm RT (min): 4.220 ± 0.787 Asymmetry: 1.12 Plates (N): 4136. This method was validated for linearity, precision, accuracy, ruggedness and robustness. Results obtained after validation study indicating that the proposed single method allowed analysis of degraded product formed of Benzonatateformed under the various stress conditions.

1. Introduction

Figure 1: Structure of Benzonatate

Benzonatate is generally used as cough reliever. Benzonatate is an Antitussive that is cough suppressants. It functions by reducing the airways and lungs' natural reflex to cough.

Benzonatate act as non-opioid drug for the symptomatic relief of cough. ^{[1][3]} It improves cough associated with the various conditions like tuberculosis, asthama, bronchitis, pneumonia, emphysema. Benzonatate is used for suppression of hiccups. ^[2]. Benzonatate in the form of liquid capsule is used in the mouth to numb the oropharynx for

awake incubation. Benzonatate act as a local anesthetic.^[1] But, when the medicine is observed by the oral mucosa, there may be potentially fatal side effects include circulatory collapse circulatory collapse, hypersensitivity reactions and circulatory collapse.^[1]Benzonatate is voltage gated sodium channel inhibitor.^[7] It acts as a local anesthetic, after absorption.It acts as a local anesthetic by decreasing the sensitivity of vagal afferent fibers and stretch receptors in alveoli, bronchi and pleura in the lower airways and lung after absorption and circulation to the respiratory tract.^{[1][2][4]}

2. Material and Instrument

Methanol (HPLC Grade), NaOH , HCl, 30% H₂O₂ water with HPLC grade. Methanol , Sodium hydroxide , Hydrochloric acid, Hydrogen peroxide solution 30%w/v (H₂O₂) were brought from MERCK LABORATORIES PVT LTD, Mumbai.

Instruments:

Analysis performed on HPLC instrument equipped with Borwin- PDA software (version 1.50), Model PU 2080 Plus Intelligent HPLC pump, MX-2080-31 Solvent Mixing Module, BDS HypersilC18 column (250×4.6 mm, 5 µ), MD 2010 Plus Multi-wavelength PDA detector, Rheodyne sample injection port 2µl loop. Double beam UV-Visible spectrophotometer (Model JASCO V-730), Shimadzu (model AY-120) electronic weighting balance, Sonicator of Prama solutions laboratory, ELGA Lab (PUERELAB UHO-II) water purification system. Conductivity below 0.05 µS/cm, Photo stability chamber- Newtronic Electronic PH meter pH meter, Calibrated Glassware.

Preparation of Standard Stock Solution

An accurately weighed 100mg of Benzonatate was taken in 100ml volumetric flask and the volume was made to100ml with Methanol, to get standard stock solution of Benzonatate (1000 μ g/ml). From the standard stock solution, working standard solution was prepared using methanol as final diluent.

Selection of Analytical Wavelength: A solution of 10μ g/ml was separated from stock solution of Benzonatate (1000 µg/ml) and scanned over 200-400 nm in UV– Spectrophotometer. The maximum absorbance was shown at 308 nm. Hence 308nm selected as analytical wavelength and the UV spectrum is given in Fig 2.

Figure 2: UV of Benzonatate in methanol (10 µg/ml)

Mobile Phase Optimisation: Few mobile phases were tried to achieve optimum chromatographic condition. Ammonium acetate buffer and methanol mobile phase system was initially tried but did not get a considerable number of theoretical plates as well as

peak shape. Methanol (0.01%) and Formic acid (70:30%) was tried and has obtained considerable theoretical plates and appropriate peak shape, with appropriate system suitability parameters

Table 1:	Trials	of mobile	phase for	r Benzonatate
----------	--------	-----------	-----------	---------------

Optimized Chromatographic Condition:Column: HiQSil C18 (250 ×4.6mm,5µ) Mobile Phase is Methanol: 0.01% Formic Acid (70:30v/v) Flow rate : 1ml/minColumn Temperature:AmbientDetector set at 308nmRT (min): 4.220 ± 0.787 Asymmetry: 1.12Plates (N): 4136

ISSN: 2309-5288 (Print) ISSN: 2309-6152 (Online) CODEN: JCLMC4

Figure 4: Chromatogram of Benzonatate

Validation of Analytical Method: [8-9]

In the development and validation of proposed analytical method involves factors like specificity, linearity, precision, accuracy, and assay, limit of detection and limit of quantitation. It is validated according to ICH Q2 guidelines.

Specificity:

Specificity was checked by injecting blank, placebo and comparing the peaks observed in sample solution with standard solution. No interferenceswere observed. Observed peak in sample solution matched standard peak of Benzonatate showed that, the method is specific. Also Specificity was assessed using peak purity profiling studies. More than 997 was discovered for the max purity values. The results demonstrate that no additional degradation product peak, contaminant, or matrix interfered with the studies.(Table 2)

the method indicated good performance of thesystem

in

Table

3

depicted

Fable 2:	Peak	purity	of Be	enzonatate
----------	------	--------	-------	------------

Drug	Purity tail	Purity front
Benzonatate	998.24	997.67

System suitability:

System suitability was evaluated by retention time, theoretical plates, asymmetric factor parameters and

Table 3: System suitability parameters

as

Concentration	RT				
μg/ml	(min) ± RSD	Area	Plates	Asymmetry	
10	4.220 ± 0.787	447151.08	4136	1.07	

Linearity:

Linearity is directly proportional to concentration of the analyte in the sample. A solution containing 100 g/ml of methanol was prepared from the normal stock solution (1000 g/ml) of Benzonatate. Also, a range of solutions with six different concentrations were made using this solution. By examining six solutions with concentrations ranging from 5 to 30 g/ml, the linearity was ascertained, and the calibration curve's equation, y = 45152x-6566.5, was discovered. Table 6.4 for Benzonatate contains the results that were attained. To create the calibration curve, the peak area of drug was plotted against the corresponding concentration as shown in Fig. 4 and overlay of Linearity Range is given in Fig. 5.

 Table 4: Results of Linearity for Benzonatate

Replicates	Concentration (µg/ml)					
	5	10	15	20	25	30
	Peak Area					
1	224415.60	447151.08	666585.74	868633.62	1125851.42	1338118.44
2	226639.50	443971.50	669945.20	873910.20	1127309.60	1344543.10

3	227761 50	444912.50	678826 90	860698 80	1126195 20	1371349.20
5	227701.00	111912.00	070020.70	0000/0.00	11201/0.20	15/15/0.20
4	226630 50	443071 50	660045 20	883010.20	1127200.60	1357454 10
4	220039.30	4439/1.30	009945.20	003910.20	112/309.00	1557454.10
5	222461 50	444012 10	668876.00	880608 80	11/6105 20	1361340.20
5	223401.30	444912.10	000020.90	000090.00	1140195.20	1501549.20
6	227456 50	447818.00	667713.00	884003 20	1121858 /0	1358100 70
0	227430.30	44/010.90	007715.90	004903.20	1121030.40	1556100.70
Mean	226062.35	115156 20	670307 31	875450 14	1120110.00	1355152.46
wican	220002.33	443430.20	070307.31	075459.14	1129119.90	1555152.40
SD	1579 72	1/197 5/	3001.03	8707.46	7853 73	1093/196
50	1377.72	1777.57	3771.75	0707.40	1055.15	10754.70
% RSD	0.70	0.34	0.60	0.00	0.70	0.81
70 KSD	0.70	0.54	0.00	0.99	0.70	0.01

Figure 6: CalibrationCurve of Benzonatate (5-30µg/ml)

Figure 6: Overlay of Linearity Range (5-30 µg/ml)

Precision:

By conducting intraday and interday variation investigations, the method's precision was shown. In

intraday studies, the percentage RSD was computed after the same-day analysis of three replicates of three distinct concentrations. In interday investigations, the

% RSD was computed after the analysis of 3 replicates of 3 distinct concentrations over the course of 3 days. Tables 5(a) and 5(b) display the findings of

the interday and intraday precision experiments, respectively.

Concentration	Area	Practical Concentration (µg/ml)	% Drug Content	Mean ± SD	%RSD
10	445512.825	10.012	100.124		
10	446165.612	10.027	100.268	99.868 ± 0.468	0.469
10	441390.546	9.921	99.211		
20	888685.642	19.828	99.138		
20	889683.436	19.850	99.248	99.466 ± 0.389	0.391
20	896586.878	20.003	100.013		
30	1351667.265	30.081	100.271		
30	1361665.274	30.303	101.009	101.512 ± 0.352	0.350
30	1351456.289	30.077	100.256		

 Table 5 (b): Results of Interday Precision

Concentration	Area	Obtained	%Drug	Mean±SD	%RSD
			Content		
		Concentration			
		(µg/ml)			
10	443751.078	9.973	99.734		
10	446071 525	10.045	100 447	100 124	0.205
10	4469/1.535	10.045	100.447	$100.124 \pm$	0.295
10	115818 023	10.010	100 192	0.295	
10	445010.925	10.019	100.192		
20	888633.612	19.826	99.132		
20	898910.263	20.054	100.270	99.883 ± 0.531	0.532
20	898698.841	20.049	100.246		
30	1338118.439	29.781	99.271		
20	1244015 244	20.020	00 765	00.411 + 0.252	0.254
50	1544015.544	29.930	99.703	77.411 ± 0.232	0.234
30	1337118.552	29.759	99,197		
	100,110,000	_>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
10 10 20 20 20 30 30 30	446971.535 445818.923 888633.612 898910.263 898698.841 1338118.439 1344815.344 1337118.552	10.045 10.019 19.826 20.054 20.049 29.781 29.930 29.759	100.447 100.192 99.132 100.270 100.246 99.271 99.765 99.197	100.124 ± 0.295 99.883 ± 0.531 99.411 ± 0.252	0.29 0.53 0.25

Limit of detection (LOQ) and limit of quantitation (LOQ)

The smallest amount of analyte in a sample that can be quantitatively determined with the necessary precision and accuracy is known as the quantitative limit of an analytical method, according to ICH. The lowest concentration of analyte in a sample that can be quantitatively identified with the necessary precision and accuracy is the limit of detection of an analytical method. The smallest amount of analyte in the sample that can be detected but not necessarily quantitated as an accurate value is the limit of detection of an analytical procedure.

Formula for calculation of LOD and LOQ.

G = S.D. of the response at lowest concentration or standard deviation of Y intercept;

S = Average of slope of the calibration curve.

ISSN: 2309-5288 (Print)

LOD of Benzonatate = 0.271µg/ml

LOQ of Benzonatate = 0.821µg/ml

Assay:

Benzonatate containing 100mg drug was transferred into 100ml volumetric flask with methanol. The solution prepared was found to be clear having the strength 1000μ g/ml. 10ml of this solution was diluted to 100ml with methanol to get 100 µg/ml solution. This solution is further diluted to 10ml with mobile phase which gives 10μ g/ml solution, which was injected to system and chromatograph was recorded. The procedure was followed for six times. Percentage drug recovered obtained is shown in Table6.

Sr. No.	Peak Area	Amount Recovered	% Recovery	Mean ± %
		(µg/ml)	(µg/ml)	KSD
1	448467.124	10.078	100.778	
2	449276.136	10.096	100.957	
3	440648.602	9.905	99.047	100.191 ± 0.837
4	440368.845	9.898	98.985	
5	447561.336	10.058	100.578	
6	448561.347	10.080	100.799	

Table 6: Results of Assay studies

Accuracy:

Accuracy was determined by method of standard addition. Calculated amount of API to be analyzed was added to the marketed formulation of Benzonatate. In the assay solution pure API was spiked at 50%, 100%, 150% level. The 3 replicates of 3 concentrations were evaluated to calculated % recovery. The obtained results are summarized in table 7.

Level	Conc. Of Sample Solution (µg/ml)	Conc. Of Standard solution spiked (µg/ml)	Area	Amount recovered (µg/ml)	% Recovery	% Recovery (Mean ± %RSD)
			671790.412	15.024	100.159	
						$100.682 \pm$
50.04	10	5	676559.145	15.129	100.863	0 272
30 %			(77(55.00)	15 154	101.025	0.575
			077055.902	15.154	101.025	
			898691.925	20.049	100.246	
100 %	10	10	889909.735	19.855	99.273	99.597 ±
			889908.314	19.855	99.273	0.460
			1111858.488	24.770	99.081	
150 %	10	15	1121858.265	24.992	99.967	99.967 ±
			1131866.784	25.213	100.853	0.724
					1	

Table 7: Result of Accuracy Studies

Robustness:

Robustness is employed to perform the study in situations where the mobile phase composition (+2ml composition), detecting wavelength (+1nm), and flow

rate (+0.05ml/min) were altered. The effects on the area were then observed. The method's robustness was confirmed by deliberate variation of the analytical parameters, which revealed that areas of interest peaks were unaffected by minor changes in the parameters.

Table	8:	Robustness	Study
-------	----	------------	-------

%RSD found for Robustness study (Peak Area)									
MP composition						Flow rate (<u>+0.5ml/min</u>)			
(<u>+ 2ml composition</u>)		Detection wavelength (<u>+</u> 1nm)							
72:28	70:30	68:32	307	308	309	0.95	1	1.05	
0.532	0.380	0.501	0.565	0.170	0.292	0.647	0.462	0.571	

Summary of results of validation parameters

Sr. No.	Parameters of Validation	Benzonatate Results		
	Linearity Equation	y= 45152x -6566.5		
1.	\mathbb{R}^2	$R^2 = 0.9993$		
	Range	5-30 µg/ml		
	Precision	(%RSD)		
2.	Intraday	0.350 - 0.469		
	Interday	0.254 – 0.532		
3.	Assay	100.191 ± 0.837		
	Accuracy	Mean ± %RSD		
4.	50	100.682 ± 0.373		
	100	99.597 ± 0.460		
	150	99.967 ± 0.724		
5.	LOD	0.271 µg/ml		
6.	LOQ	0.821µg/ml		
7.	Specificity	Specific		
8.	Robustness	Robust		

Table 9: Summary of results of Validation parameters

3. Forced Degradation Studies Acid Degradation:

Sample was prepared by addition 1ml of 2N HCl to 1ml of stock solution $(1000\mu g/ml)$ of Benzonatate. The solution was placed at room temperature for

about 2 hours. The solution was then neutralized and the volume was made to 10ml with methanol and further diluted with mobile phase to get 100μ g/ml solution which was injected to system. Chromatogram is shown in Fig.7.

Figure 7: Chromatogarm of Acid Degradation (100µg/ml)

Alkali Degradation:

Sample was made by adding 1 ml of 1NaOH to 1 ml stock solution (1000 μ g/ml) of Benzonatate. The prepared solution was placed at room temperature for

about 2 hours. Solution was the neutralized and volume was then made to 10ml with methanol and further diluted with mobile phase to get 100 μ g/ml solutions which was injected to system. Shown in Chromatogram Fig. 8.

Fig. 8 Chromatogram of Alkali Degradation (100µg/ml)

Hydrogen-Peroxide Induced Degradation:

temperature for about 2 hours. Volume was made to 10ml with methanol and further diluted with mobile phase to get 100μ g/ml solutions was injected to system. Chromatogram is shown in fig.9.

Fig 9: Chromatogram hydrogen peroxide degradation (100 µg/ml)

Thermal InducedDegradation:

The Bulk drug was exposed to 100°C temperature in hot air oven for 2 hours. The sample was cooled to room temperature and then 10mg of the power was

dissolved in methanol to 10ml. One ml was diluted to 10ml with mobile phase to get 100μ g/ml solution which was injected to system. Chromatogram is shown in Fig,10.

Fig 10: Chromatogram thermal induced degradation (30µg/ml)

Photolytic Degradation:

Sample was exposed to UV light for not less than 200 watt hrs/sqmt followed by white fluorescent light of illumination for not less than 1.2 million lux hours.

After exposure 10mg of power was weighed and dissolved in methanol to 10ml. From this final dilution of concentration 100μ g/ml was prepared and injected to get chromatogram shown in Fig.11.

ISSN: 2309-5288 (Print) ISSN: 2309-6152 (Online) CODEN: JCLMC4

Fig 11: Chromatogram UV Degradation (100µg/ml)

Table 10:	Summary	of stressed	degradation
-----------	---------	-------------	-------------

SN	Parameter and Condition	% Recovery	%	RT of degraded
			Degradation	products
1	Acid Degradation	96.58	3.42	
	(2N HCl for 2 hr)			
2	Alkaline Degradation	86.46	13.54	DP1- 2.587 min
	(1N NaOH for 2hr)			DP2 – 2.907 min
3	Oxidative Degradation	82.95	17.05	DP3 – 8.400 min
	(30% H ₂ O ₂ for 2 hr)			

4	Thermal Degradation	98.73	1.27	
	(100 ^o C for 2 hr)			
5	Photo degradation	99.24	0.76	
	UV light 200 watt hr/square meter followed by fluorescence light of NLT 1.2million Lux-Hr)			

4. Conclusion

The development and validation of the devised HPLC technique showed that it is suitable for the analysis of Benzonatate. It isaccurate,easy, quick, precise, specific and stability-indicating. The approach is reliable enough to replicate precise and accurate results under various chromatographic circumstances. The uniformity and absence of interferences with the peak of interest were confirmed by degradation experiments. The created approach can be applied to standard Benzonatate analysis.

References

- [1] "Benzonatate Monograph for Professionals". Drugs.com. American Society of Health-System Pharmacists. Retrieved 23 March 2019.
- [2] Becker, DE (2010). "Nausea, vomiting, and hiccups: a review of mechanisms and treatment". Anesthesia Progress. 57 (4): 150–6.
- [3] "Drugs for cough". The Medical Letter on Drugs and Therapeutics. 60 (1562): 206–208. 17 December 2018.

- [4] "Tessalon benzonatate capsule". DailyMed. 20 November 2019. Retrieved 21 April 2020.
- [5] "BenzonatateUseDuringPregnancy". Drugs.com.10October2019.Retrieved 20 February 2020.
- [6] Homsi, J.; Walsh, D.; Nelson, K. A. (November 2001). "Important drugs for cough in advanced cancer". Supportive Care in Cancer. 9 (8): 565– 574.
- [7] Bishop-Freeman SC, Shonsey EM, Friederich LW, Beuhler MC, Winecker RE (June 2017). "Benzonatate Toxicity: Nothing to Cough At". J Anal Toxicol. 41 (5): 461–463.
- [8] Patel A. B, "Analytical Method Validation: Collation between International Guidelines, Asian Journal of Research in Chemistry", 2017; 10(6):1-10.
- [9] 9.ICH Harmonized Tripartite Guideline, ICH Q2 (R1); Text & Methodology; November 2007, pp 6.