Malaria: An Insight into Its Biology, Pathogenesis, Limitation and Opportunities associated with current therapy of Malaria.

Main Article Content

S. Khatri
N. Kawathekar
G. Jain


The malaria disease is caused by five species of unicellular eukaryotic Plasmodium parasite that are spread by Anopheles mosquito’s bite. It remains one of the serious life- threatening infectious disease and causing millions of deaths in 2021. Malaria is controlled with the combination of vector control methods and medications for both treatment as well as prevention. The prevalent utilization of artemisinin-based polytherapy has attributed to significant reductions in malaria deaths, but drug resistance poses threat to overturn this advancement. Understanding the fundamental biological pathways of disease pathogenesis has aided the development of new medicines, insecticides and diagnostics. Several new combination therapy as well as new compounds with effective against medicine resistible plasmodium and their potential to be employed in mono-dose regimens to increase adherence are in clinical trial. This optimistic malaria-eradication programme includes novel strategies that could result in malaria vaccine or vector controlling strategies. However, despite these accomplishments, malaria elimination will require a well-coordinated global initiative on multiple fronts.

Article Details

How to Cite
S. Khatri, N. Kawathekar, & G. Jain. (2023). Malaria: An Insight into Its Biology, Pathogenesis, Limitation and Opportunities associated with current therapy of Malaria. Journal of Coastal Life Medicine, 11(1), 1194–1221. Retrieved from


Debash H, Erkihun Y, Bisetegn H. Malaria Threatens to Bounce Back in Abergele District, Northeast Ethiopia: Five-Year Retrospective Trend Analysis from 2016-2020 in Nirak Health Center. BioMed Research International. 2022;2022:6388979.

Phillips MA, Burrows JN, Manyando C, van Huijsduijnen RH, Van Voorhis WC, Wells TNC. Malaria. Nature Reviews Disease Primers. 2017;3(1):17050.

World Health Organisation. World Malaria Report Geneva: Switzerland: WHO; 2021.

Gujjari L, Kalani H, Pindiprolu SK, Arakareddy BP, Yadagiri G. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria. Parasite Epidemiology and Control. 2022;17:e00244.

Boualam MA, Pradines B, Drancourt M, Barbieri R. Malaria in Europe: A Historical Perspective. Front Med (Lausanne). 2021;8:691095.

Talapko J, Škrlec I, Alebić T, Jukić M, Včev A. Malaria: The Past and the Present. Microorganisms. 2019;7(6).

Cox FE. History of the discovery of the malaria parasites and their vectors. Parasit Vectors. 2010;3(1):5.

Ross RJBmj. On some peculiar pigmented cells found in two mosquitos fed on malarial blood. 1897;2(1929):1786.

Giribaldi G, D’Alessandro S, Prato M, Basilico N. Etiopathogenesis and Pathophysiology of Malaria: Human and Mosquito Lysozymes. 2014 Sep 22:1-18. doi: 10.1007/978-3-319-09432-8_1.

Ménard R. Medicine: knockout malaria vaccine? Nature. 2005;433(7022):113-4.

Ejigiri I, Sinnis P. Plasmodium sporozoite-host interactions from the dermis to the hepatocyte. Curr Opin Microbiol. 2009;12(4):401-7.

Cowman AF, Healer J, Marapana D, Marsh K. Malaria: Biology and Disease. Cell. 2016;167(3):610-24.

Teo A, Feng G, Brown GV, Beeson JG, Rogerson SJ. Functional antibodies and protection against blood-stage malaria. Trends in parasitology. 2016;32(11):887-98.

Kwiatkowski D, Hill AV, Sambou I, Twumasi P, Castracane J, Manogue KR, et al. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet. 1990;336(8725):1201-4.

Chugh M, Sundararaman V, Kumar S, Reddy VS, Siddiqui WA, Stuart KD, et al. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc Natl Acad Sci U S A. 2013;110(14):5392-7.

Vaughan AM, Kappe SHI. Malaria Parasite Liver Infection and Exoerythrocytic Biology. Cold Spring Harb Perspect Med. 2017;7(6).

Tavares J, Formaglio P, Thiberge S, Mordelet E, Van Rooijen N, Medvinsky A, et al. Role of host cell traversal by the malaria sporozoite during liver infection. 2013;210(5):905-15.

Ishino T, Yano K, Chinzei Y, Yuda MJPb. Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. 2004;2(1):e4.

Risco-Castillo V, Topçu S, Marinach C, Manzoni G, Bigorgne AE, Briquet S, et al. Malaria sporozoites traverse host cells within transient vacuoles. 2015;18(5):593-603.

Bhanot P, Schauer K, Coppens I, Nussenzweig VJJoBC. A surface phospholipase is involved in the migration of Plasmodium sporozoites through cells. 2005;280(8):6752-60.

Rodrigues CD, Hannus M, Prudêncio M, Martin C, Gonçalves LA, Portugal S, et al. Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection. 2008;4(3):271-82.

Sturm A, Amino R, Van de Sand C, Regen T, Retzlaff S, Rennenberg A, et al. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. 2006;313(5791):1287-90.

Weiss GE, Gilson PR, Taechalertpaisarn T, Tham W-H, de Jong NW, Harvey KL, et al. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. 2015;11(2):e1004670.

Cowman AF, Tonkin CJ, Tham WH, Duraisingh MT. The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. Cell Host Microbe. 2017;22(2):232-45.

Egan ES, Jiang RH, Moechtar MA, Barteneva NS, Weekes MP, Nobre LV, et al. Malaria. A forward genetic screen identifies erythrocyte CD55 as essential for Plasmodium falciparum invasion. Science. 2015;348(6235):711-4.

Zheng H, Tan Z, Xu W. Immune evasion strategies of pre-erythrocytic malaria parasites. Mediators Inflamm. 2014;2014:362605.

Cowman AF, Crabb BS. Invasion of Red Blood Cells by Malaria Parasites. Cell. 2006;124(4):755-66.

Crosnier C, Bustamante LY, Bartholdson SJ, Bei AK, Theron M, Uchikawa M, et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature. 2011;480(7378):534-7.

volz JC, Yap A, Sisquella X, Thompson JK, Lim NT, Whitehead LW, et al. Essential Role of the PfRh5/PfRipr/CyRPA Complex during Plasmodium falciparum Invasion of Erythrocytes. Cell Host Microbe. 2016;20(1):60-71.

Paul AS, Egan ES, Duraisingh MT. Host-parasite interactions that guide red blood cell invasion by malaria parasites. Curr Opin Hematol. 2015;22(3):220-6.

Zenonos ZA, Dummler SK, Müller-Sienerth N, Chen J, Preiser PR, Rayner JC, et al. Basigin is a druggable target for host-oriented antimalarial interventions. J Exp Med. 2015;212(8):1145-51.

Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, et al. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A. 2011;108(32):13275-80.

Remarque EJ, Faber BW, Kocken CH, Thomas AW. Apical membrane antigen 1: a malaria vaccine candidate in review. Trends Parasitol. 2008;24(2):74-84.

Boddey JA, Cowman AF. Plasmodium nesting: remaking the erythrocyte from the inside out. Annu Rev Microbiol. 2013;67:243-69.

Spillman NJ, Beck JR, Goldberg DE. Protein export into malaria parasite-infected erythrocytes: mechanisms and functional consequences. Annual review of biochemistry. 2015;84:813-41.

Yuthavong Y, Tarnchompoo B, Vilaivan T, Chitnumsub P, Kamchonwongpaisan S, Charman SA, et al. Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proc Natl Acad Sci U S A. 2012;109(42):16823-8.

Palmer MJ, Wells TN. Neglected diseases and drug discovery: Royal Society of Chemistry; 2011.

Phillips MA, Lotharius J, Marsh K, White J, Dayan A, White KL, et al. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Science translational medicine. 2015;7(296):296ra111-296ra111.

Istvan ES, Dharia NV, Bopp SE, Gluzman I, Winzeler EA, Goldberg DE. Validation of isoleucine utilization targets in Plasmodium falciparum. Proceedings of the National Academy of Sciences. 2011;108(4):1627-32.

Wunderlich J, Rohrbach P, Dalton JP. The malaria digestive vacuole. Frontiers in Bioscience-Scholar. 2012;4(4):1424-48.

Chugh M, Sundararaman V, Kumar S, Reddy VS, Siddiqui WA, Stuart KD, et al. Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proceedings of the National Academy of Sciences. 2013;110(14):5392-7.

Spillman NJ, Allen RJ, McNamara CW, Yeung BK, Winzeler EA, Diagana TT, et al. Na+ regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell host & microbe. 2013;13(2):227-37.

Spillman NJ, Kirk K. The malaria parasite cation ATPase PfATP4 and its role in the mechanism of action of a new arsenal of antimalarial drugs. International Journal for Parasitology: Drugs and Drug Resistance. 2015;5(3):149-62.

Jiménez-Díaz MB, Ebert D, Salinas Y, Pradhan A, Lehane AM, Myrand-Lapierre M-E, et al. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proceedings of the National Academy of Sciences. 2014;111(50):E5455-E62.

Huskey S-EW, Zhu C-q, Fredenhagen A, Kühnöl J, Luneau A, Jian Z, et al. KAE609 (cipargamin), a new spiroindolone agent for the treatment of malaria: evaluation of the absorption, distribution, metabolism, and excretion of a single oral 300-mg dose of [14C] KAE609 in healthy male subjects. Drug Metabolism and disposition. 2016;44(5):672-82.

White NJ, Pukrittayakamee S, Phyo AP, Rueangweerayut R, Nosten F, Jittamala P, et al. Spiroindolone KAE609 for falciparum and vivax malaria. New England Journal of Medicine. 2014;371(5):403-10.

McNamara CW, Lee M, Lim CS, Lim SH, Roland J, Nagle A, et al. Targeting Plasmodium PI (4) K to eliminate malaria. Nature. 2013;504(7479):248-53.

Ghidelli-Disse S, Lafuente-Monasterio MJ, Waterson D, Witty M, Younis Y, Paquet T, et al. Identification of Plasmodium PI4 kinase as target of MMV390048 by chemoproteomics. Malaria Journal. 2014;13(1):1-.

Mantel P-Y, Hoang AN, Goldowitz I, Potashnikova D, Hamza B, Vorobjev I, et al. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell host & microbe. 2013;13(5):521-34.

Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell. 2013;153(5):1120-33.

Kafsack BF, Rovira-Graells N, Clark TG, Bancells C, Crowley VM, Campino SG, et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature. 2014;507(7491):248-52.

Joice R, Nilsson SK, Montgomery J, Dankwa S, Egan E, Morahan B, et al. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Science translational medicine. 2014;6(244):244re5-re5.

Sinnis P, Zavala F, editors. The skin: where malaria infection and the host immune response begin. Seminars in immunopathology; 2012: Springer.

Frischknecht F, Baldacci P, Martin B, Zimmer C, Thiberge S, Olivo‐Marin JC, et al. Imaging movement of malaria parasites during transmission by Anopheles mosquitoes. Cellular microbiology. 2004;6(7):687-94.

Zheng H, Tan Z, Xu W. Immune evasion strategies of pre-erythrocytic malaria parasites. Mediators of inflammation. 2014;2014.

Boddey JA, Cowman AF. Plasmodium nesting: remaking the erythrocyte from the inside out. Annu Rev Microbiol. 2013;67(1):243-69.

Grüring C, Heiber A, Kruse F, Flemming S, Franci G, Colombo SF, et al. Uncovering common principles in protein export of malaria parasites. Cell host & microbe. 2012;12(5):717-29.

Dobaño C, Moncunill G. Naturally Acquired Immunity (NAI). In: Kremsner PG, Krishna S, editors. Encyclopedia of Malaria. New York, NY: Springer New York; 2018. p. 1-15.

Dobbs KR, Dent AE. Plasmodium malaria and antimalarial antibodies in the first year of life. Parasitology. 2016;143(2):129-38.

Fowkes FJ, Boeuf P, Beeson JG. Immunity to malaria in an era of declining malaria transmission. Parasitology. 2016;143(2):139-53.

Marsh K, Kinyanjui S. Immune effector mechanisms in malaria. Parasite immunology. 2006;28(1‐2):51-60.

Collins WE, Jeffery GM. A retrospective examination of sporozoite-and trophozoite-induced infections with Plasmodium falciparum: development of parasitologic and clinical immunity during primary infection. The American journal of tropical medicine and hygiene. 1999;61(1 Suppl):4-19.

Marsh K, Forster D, Waruiru C, Mwangi I, Winstanley M, Marsh V, et al. Indicators of life-threatening malaria in African children. New England journal of medicine. 1995;332(21):1399-404.

Rénia L, Howland SW, Claser C, Charlotte Gruner A, Suwanarusk R, Hui Teo T, et al. Cerebral malaria: mysteries at the blood-brain barrier. Virulence. 2012;3(2):193-201.

Taylor TE, Molyneux ME. The pathogenesis of pediatric cerebral malaria: eye exams, autopsies, and neuroimaging. Annals of the New York Academy of Sciences. 2015;1342(1):44-52.

Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M, et al. Investigating the pathogenesis of severe malaria: a multidisciplinary and cross-geographical approach. The American journal of tropical medicine and hygiene. 2015;93(3 Suppl):42.

Hendriksen IC, White LJ, Veenemans J, Mtove G, Woodrow C, Amos B, et al. Defining falciparum-malaria-attributable severe febrile illness in moderate-to-high transmission settings on the basis of plasma Pf HRP2 concentration. The Journal of infectious diseases. 2013;207(2):351-61.

Cunnington AJ, Walther M, Riley EM. Piecing together the puzzle of severe malaria. Science translational medicine. 2013;5(211):211ps18-ps18.

Kwiatkowski D, Sambou I, Twumasi P, Greenwood B, Hill A, Manogue K, et al. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. The Lancet. 1990;336(8725):1201-4.

Dondorp A, Ince C, Charunwatthana P, Hanson J, Kuijen Av, Faiz M, et al. Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria. The Journal of infectious diseases. 2008;197(1):79-84.

Smith JD, Rowe JA, Higgins MK, Lavstsen T. Malaria's deadly grip: cytoadhesion of P lasmodium falciparum‐infected erythrocytes. Cellular microbiology. 2013;15(12):1976-83.

Yeo TW, Lampah DA, Kenangalem E, Tjitra E, Weinberg JB, Granger DL, et al. Decreased endothelial nitric oxide bioavailability, impaired microvascular function, and increased tissue oxygen consumption in children with falciparum malaria. The Journal of infectious diseases. 2014;210(10):1627-32.

Hanson J, Lee SJ, Hossain MA, Anstey NM, Charunwatthana P, Maude RJ, et al. Microvascular obstruction and endothelial activation are independently associated with the clinical manifestations of severe falciparum malaria in adults: an observational study. BMC medicine. 2015;13(1):1-11.

Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE, Avril M, et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature. 2013;498(7455):502-5.

Moxon CA, Wassmer SC, Milner Jr DA, Chisala NV, Taylor TE, Seydel KB, et al. Loss of endothelial protein C receptors links coagulation and inflammation to parasite sequestration in cerebral malaria in African children. Blood, The Journal of the American Society of Hematology. 2013;122(5):842-51.

van Eijk AM, Ayisi JG, Ter Kuile FO, Slutsker L, Shi YP, Udhayakumar V, et al. HIV, malaria, and infant anemia as risk factors for postneonatal infant mortality among HIV-seropositive women in Kisumu, Kenya. The Journal of infectious diseases. 2007;196(1):30-7.

Church J, Maitland K. Invasive bacterial co-infection in African children with Plasmodium falciparum malaria: a systematic review. BMC medicine. 2014;12(1):1-17.

Gómez-Pérez GP, Van Bruggen R, Grobusch MP, Dobaño C. Plasmodium falciparum malaria and invasive bacterial co-infection in young African children: the dysfunctional spleen hypothesis. Malaria journal. 2014;13(1):1-15.

Scott JAG, Berkley JA, Mwangi I, Ochola L, Uyoga S, Macharia A, et al. Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case-control study and a longitudinal study. The Lancet. 2011;378(9799):1316-23.

McLean A, Ataide R, Simpson JA, Beeson JG, Fowkes F. Malaria and immunity during pregnancy and postpartum: a tale of two species. Parasitology. 2015;142(8):999-1015.

Khunrae P, Dahlbäck M, Nielsen MA, Andersen G, Ditlev SB, Resende M, et al. Full-length recombinant Plasmodium falciparum VAR2CSA binds specifically to CSPG and induces potent parasite adhesion-blocking antibodies. Journal of molecular biology. 2010;397(3):826-34.

Ataíde R, Mayor A, Rogerson SJ. Malaria, primigravidae, and antibodies: knowledge gained and future perspectives. Trends in parasitology. 2014;30(2):85-94.

Greenwood BM, Fidock DA, Kyle DE, Kappe SH, Alonso PL, Collins FH, et al. Malaria: progress, perils, and prospects for eradication. The Journal of clinical investigation. 2008;118(4):1266-76.

Peto T. Toxicity of antimalarial drugs. Journal of the Royal Society of Medicine. 1989;82(Suppl 17):30.

Wesche DL, DeCoster MA, Tortella FC, Brewer TG. Neurotoxicity of artemisinin analogs in vitro. Antimicrobial agents and chemotherapy. 1994;38(8):1813-9.

Davidson NM. Mouth ulceration associated with proguanil. The Lancet. 1986;327(8477):384.

Taylor WRJ, White NJ. Antimalarial drug toxicity. Drug safety. 2004;27(1):25-61.

Tse EG, Korsik M, Todd MH. The past, present and future of anti-malarial medicines. Malaria journal. 2019;18(1):1-21.

Gelb MH. Drug discovery for malaria: a very challenging and timely endeavor. Current opinion in chemical biology. 2007;11(4):440-5.

Science mCGoB, Technologies E. A research agenda for malaria eradication: basic science and enabling technologies. PLoS Medicine. 2011;8(1):e1000399.

Rizvi SA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi pharmaceutical journal. 2018;26(1):64-70.

Masri A, Anwar A, Khan NA, Siddiqui R. The use of nanomedicine for targeted therapy against bacterial infections. Antibiotics. 2019;8(4):260.

Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J. Nanomedicine in the management of microbial infection–overview and perspectives. Nano today. 2014;9(4):478-98.

Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology. 2018;16(1):1-33.

Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Advanced pharmaceutical bulletin. 2015;5(3):305.

Gedda MR, Madhukar P, Vishwakarma AK, Verma V, Kushwaha AK, Yadagiri G, et al. Evaluation of safety and Antileishmanial efficacy of amine functionalized carbon-based composite nanoparticle appended with amphotericin B: An in vitro and preclinical study. Frontiers in chemistry. 2020;8:510.

Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. International nano letters. 2017;7(2):91-122.

Singh A, Sharma S, Yadagiri G, Parvez S, Gupta R, Singhal NK, et al. Sensible graphene oxide differentiates macrophages and Leishmania: a bio-nano interplay in attenuating intracellular parasite. RSC advances. 2020;10(46):27502-11.

Baruah UK, Gowthamarajan K, Vanka R, Karri VVSR, Selvaraj K, Jojo GM. Malaria treatment using novel nano-based drug delivery systems. Journal of Drug Targeting. 2017;25(7):567-81.

Dadgostar P. Antimicrobial Resistance: Implications and Costs. Infect Drug Resist. 2019;12:3903-10.

Antony HA, Parija SC. Antimalarial drug resistance: An overview. Trop Parasitol. 2016;6(1):30-41.

Plowe CV, Roper C, Barnwell JW, Happi CT, Joshi HH, Mbacham W, et al. World Antimalarial Resistance Network (WARN) III: molecular markers for drug resistant malaria. Malar J. 2007;6:121.

Heinemann M, Phillips RO, Vinnemeier CD, Rolling CC, Tannich E, Rolling T. High prevalence of asymptomatic malaria infections in adults, Ashanti Region, Ghana, 2018. Malaria journal. 2020;19(1):1-7.

Dembélé L, Franetich J-F, Lorthiois A, Gego A, Zeeman A-M, Kocken CH, et al. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nature medicine. 2014;20(3):307-12.

Barrett MP, Kyle DE, Sibley LD, Radke JB, Tarleton RL. Protozoan persister-like cells and drug treatment failure. Nature Reviews Microbiology. 2019;17(10):607-20.

Forte B, Ottilie S, Plater A, Campo B, Dechering KJ, Gamo FJ, et al. Prioritization of Molecular Targets for Antimalarial Drug Discovery. ACS Infectious Diseases. 2021;7(10):2764-76.

Chandana M, Anand A, Ghosh S, Das R, Beura S, Jena S, et al. Malaria parasite heme biosynthesis promotes and griseofulvin protects against cerebral malaria in mice. Nature Communications. 2022;13(1):4028.

Schwartz L, Brown GV, Genton B, Moorthy VS. A review of malaria vaccine clinical projects based on the WHO rainbow table. Malaria journal. 2012;11(1):1-22.

Levine MM, Graves PM. Battling Malaria: Strengthening the US Military Malaria Vaccine Program: National Academies Press; 2006.

Felgner PL, Roestenberg M, Liang L, Hung C, Jain A, Pablo J, et al. Pre-erythrocytic antibody profiles induced by controlled human malaria infections in healthy volunteers under chloroquine prophylaxis. Scientific reports. 2013;3(1):1-9.

Seder RA, Chang L-J, Enama ME, Zephir KL, Sarwar UN, Gordon IJ, et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science. 2013;341(6152):1359-65.

Spring M, Murphy J, Nielsen R, Dowler M, Bennett JW, Zarling S, et al. First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers. Vaccine. 2013;31(43):4975-83.