Medicinal Plants for Potential Use in the Management of Covid-19 and other tropical diseases: A Review

Main Article Content

Dennis Amaechi
I.P. Ekpe
B.N. Yisa
Martin Onukwuba


The goal of this review is to present some medicinal plants and their antiviral properties in relation to Covid-19 and other tropical diseases.

The coronavirus disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (COVID-19). It is now well known thatsecondary plant metabolites have been used in the management of various diseases, including from diabetes, malaria, cancer and corona virus. They are adopted for used due to their accessibility and are cheap. Today’s research, there are a plethora of essential medicinal plants with antiviral activity that can be utilized to treat viral infections and as a supportive treatment. Some of the limitations of medicinal plants include lack of information on their safety profiles and dosage for various ailments. Plant-based nutraceuticals can disrupt COVID-19 pathogenesis by preventing SARS-CoV-2 proliferation and entrance into host cells. Some of these antiviral medicinal plant species, such as V. amygdalina, Azadirachtaindica, Acanthaceae,Anacardiaceae, Apocynaceae, Asphodelaceae, Asteraceae, BombacaceaeCombretaceae, Cyperaceae, Fabaceae, Flacourtiaceae, Gentianaceae, Lamiaceae, MoraceaePhyllanthaceae, Piperaceae, Rosaceae, Rutaceae, Theacea, Urticaceae, Zingiberaceaeand Nigella sativa L. (Ranunculaceae), produce nutraceuticals that are useful adjuvant components in COVID-19 management.

Article Details

How to Cite
Dennis Amaechi, I.P. Ekpe, B.N. Yisa, & Martin Onukwuba. (2023). Medicinal Plants for Potential Use in the Management of Covid-19 and other tropical diseases: A Review . Journal of Coastal Life Medicine, 11(1), 2153–2166. Retrieved from


Farombi, E. O. and Choudhary, M. I. (2010). Another Anticancer Elemanolide from Vernoniaamygdalina Del. International Journal of Biology and Chemical Sciences. 4: 226–234.

Yeap, S. K., Ho, W. Y., Beh, B. K., Liang, W. S., Ky, H., Hadi, A. and Alitheen, N. B. (2010). Vernoniaamygdalina, an Ethnomedical used Green Vegetable with Multiple Bio-activities. Journal of Medicinal Plants Research. 4(25): 2787–2812

Justin, I., Ekong, P., Ubana, E., Zaini, M. and Ahmad, M. (2012). Synergistic Antidiabetic Activity of Vernoniaamygdalina and Azadirachtaindica: Biochemical Effects and Possible Mechanism. Journal of Ethnopharmacology. 141(3): 878–887.

Ilondu, E. M. (2010). Phytochemical Composition and Efficacy of Ethanolic Leaf Extracts of Some Vernonia Species against Two Phytopathogenic Fungi. Journal of Biopesticides. 6(2): 165–172.

Luo, X., Jiang, Y., Fronczek, F. R., Lin, C., Izevbigie, E. B., Lee, S. and Lee, K. S. (2017). Isolation and Structure Determination of a Sesquiterpene Lactone (Vernodalinol) from Vernoniaamygdalina Extracts. Pharmaceutical Biology. 49(5): 464–470.

Ijeh, I. I. and Ejike, C. E. C. C. (2011). Current Perspectives on the Medicinal Potentials of Vernoniaamygdalina Del. Journal of Medicinal Plants Research. 5(7): 1051–1061

Adedapo, A. A., Aremu, O. J., and Oyagbemi, A. A. (2014). Anti-oxidant, anti-inflammatory and antinociceptive properties of the acetone leaf extract of Vernoniaamygdalina in some laboratory animals. Adv. Pharm. Bull. 4 (Suppl. 2), 591–598.

Omoregie, E. S., and Pal, A. (2016). Antiplasmodial, antioxidant and immunomodulatory activities of ethanol extract of Vernoniaamygdalina Del. leaf in Swiss mice. Avicenna J. Phytomed. 6 (2), 236–247.

Onasanwo, S. A., Oyebanjo, O. T., Ajayi, A. M., and Olubori, M. A. (2017). Anti-nociceptive and anti-inflammatory potentials of Vernoniaamygdalina leaf extract via reductions of leucocyte migration and lipid peroxidation. J. Intercult. Ethnopharmacol. 6 (2), 192–198.

Asante, D.-B., Henneh, I. I. T., Acheampong, D. O., Kyei, F., Adokoh, C. K., Ofori, E. G., et al. (2019). Anti-inflammatory, anti-nociceptive and antipyretic activity of young and old leaves of Vernoniaamygdalina. Biomed. Pharmacother. 111, 1187–1203.

Zakaria, Y., Azlan, N. Z., Hassan, N. F. N., and Muhammad, H. (2016). Phytochemicals and acute oral toxicity studies of the aqueous extract of Vernoniaamygdalina from state of Malaysia. J. Med. Plants Stud. 4, 1–5.

Saalu, L., Akunna, G., and Oyewopo, A. (2013). The histo-morphometric evidences of Vernoniaamygdalina leaf extract-induced testicular toxicity. Int. J. Morphol. 31, 662–667.

Puri H.S. Neem: The divine tree; Azadirachtaindica. Amsterdam: Harwood Academic Publishers. 1999; 1-3.

Schmutterer H. The neem tree: Source of Unique Natural Products for Integrated Pest Management, Medicine, Industry and Other Purposes, VCH, Weinheim, Germany. 1995; 1-696.

EL-Mahmood A.M., Doughari J.H., Ladan N. Antimicrobial screening of stem bark extracts of Vitellariaparadoxa against some enteric pathogenic microorganisms. Afr. J Pharm. Pharmacol. 2008; 2(5):089-094

Kumar A, IIavarasan R, Jayachandran T, Decaraman M, Aravindhan P, Padmanabhan N, Krishman MR. Phytochemicals investigation on a tropical plant, Azadirachtaindica Erode District, Tamil Nadu, South India. Pakistan Journal of Nutrition. 2009; 8(1):83-85.

Verkerk R.H.J. and Wright D.J. Biological activity of neem seed kernel extract and synthetic azadirachtin against larvae of Plutellaxylostellal. Pesticide Science. 1993; 37:83-91.

Jacobson M. Review of neem research in the United States. In: Locke JC, Lawson, RH (eds) proceedings of a workshop in neems potential in pest management program. USDA-ARS. Beltsville, MD. ARS. 1990; 86:414.

Shoforowa A. (1993) Introduction to medical plants and traditional medicine spectrum book limited.

Wandscheer C.B. and Duque J.E. Larvicidal action of ethanolic extracts from fruits endocarps of Meliaazedarach and Azadirachtaindica against the dengue mosquito AedesAegypti. Toxicol 2004; 44: 829-35.

Descalzo A.M., Coto C. Inhibition of the pseudo rabies virus by an and vital agent isolated from the leaves of Meliaazedarach Rev. Argent Microbial; 1989; 21:133-40.

Awadh Ali, N.A.A., Jülich, W., Kusnick, C., Lindequist, U. Screening of Yemeni medicinal plants for antibacterial and cytotoxic activities. J.Ethnopharmacol. 2001; 74:173-179.

Chistokhodova, N., Nguyen, C., Calvino, T., Kachirskaia, I., Cunningham, G., Howard Miles, D. Antithrombin activity of medicinal plants from central Florida. J.Ethnopharmacol. 2002; 81:277-280.

Dwivedi, V. D., Bharadwaj, S., Afroz, S., Khan, N., Ansari, M. A., Yadava, U., et al. (2020). Anti-dengue infectivity evaluation of bioflavonoid from Azadirachtaindica by dengue virus serine protease inhibition. J. Biomol. Struct. Dyn. 39 (4), 1417–1430.

Borkotoky, S., and Banerjee, M. (2020). A computational prediction of SARS-CoV-2 structural protein inhibitors from Azadirachtaindica (neem). J. Biomol. Struct

Venugopalan, S. S. K., Viswesharan, N., and Aiyalu, R. N. (2011). Neem leaf glucosamine stimulates Interleukin-2 (IL-2) in swiss albino mice. Nat. Preced. 59, 231.

Aljindil, T. (2012). The immunomodulatory effect of neem (Azadirachtaindica) seed aqueous, ethanolic extracts and Candida albicans cell wall mannoproteins on immune response in mice vaccinated with Brucella Rev-1. Iraqi J. Vet. Med. 36, 55.

Koley, K. M., and Lal, J. (1994). Pharmacological effects of Azadirachtaindica (neem) leaf extract on the ECG and blood pressure of rat. Indian J. Physiol. Pharmacol. 38 (3), 223–225.

Hore, S. K., Maiti, S. K., and Neer, G. (1999). Effect of subacute exposure to neem (Azadirachtaindica) leaf extract in rats. Indian Vet. J. 76, 1011–1012.

Talwar, G. P., Shah, S., Mukherjee, S., and Chabra, R. (1997). Induced termination of pregnancy by purified extracts of Azadirachtaindica (neem): mechanisms involved. Am. J. Reprod. Immunol. 37 (6), 485–491.

Mustapha, N. M., Mahmood, N. Z. N., Ali, N. A. M., and Haron, N. (2017). KhazanahPerubatanMelayuTumbuhanUbatanJilid 2. Selangor.

Chaudhry Z., Khera R.A., Hanif M.A., Ayub M.A., Sumrra S.H. Chapter 13—Cumin. In: Hanif M.A., Nawaz H., Khan M.M., Byrne H.J., editors. Medicinal Plants of South Asia. Elsevier; Amsterdam, The Netherlands: 2020. pp. 165–178.

Yimer E.M., Tuem K.B., Karim A., Ur-Rehman N., Anwar F. Nigella sativa L. (Black Cumin): A Promising Natural Remedy for Wide Range of Illnesses. Evid. Based Complement. Altern. Med. 2019;2019

Kooti W., Hasanzadeh-Noohi Z., Sharafi-Ahvazi N., Asadi-Samani M., Ashtary-Larky D. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa) Chin. J. Nat. Med. 2016;14:732–745.

Kabir Y., Shirakawa H., Komai M. Nutritional composition of the indigenous cultivar of black cumin seeds from Bangladesh. Prog. Nutr. 2019;21:428–434.

Abdel-Moneim, A., Morsy, B. M., Mahmoud, A. M., Abo-Seif, M. A., and Zanaty, M. I. (2013). Beneficial therapeutic effects of Nigella sativa and/or Zingiberofficinale in HCV patients in Egypt.

Ulasli, M., Gurses, S. A., Bayraktar, R., Yumrutas, O., Oztuzcu, S., Igci, M., et al. (2014). The effects of Nigella sativa (Ns), Anthemishyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Mol. Biol. Rep. 41 (3), 1703–1711.

Ashfaq, U. A., Jalil, A., and UlQamar, M. T. (2016). Antiviral phytochemicals identification from Azadirachtaindica leaves against HCV NS3 protease: an in silico approach. Nat. Prod. Res. 30 (16), 1866–1869.

Salem, A. M., Bamosa, A. O., Qutub, H. O., Gupta, R. K., Badar, A., Elnour, A., et al. (2017). Effect of Nigella sativa supplementation on lung function and inflammatory mediators in partly controlled asthma: a randomized controlled trial. Ann. Saudi Med. 37 (1), 64–71.

George, A., Suzuki, N., Abas, A. B., Mohri, K., Utsuyama, M., Hirokawa, K., et al. (2016). Immunomodulation in middle-aged humans via the ingestion of Physta® standardized root water extract of Eurycomalongifolia Jack-a randomized, double-blind, placebo-controlled, parallel

Wei, P. H., Wu, S. Z., Mu, X. M., Xu, B., Su, Q. J., Wei, J. L., et al. (2015). Effect of Alcohol Extract of Acanthus ilicifolius L. On Anti-duck Hepatitis B Virus and protection of Liver. J. Ethnopharmacol. 160, 1–5. doi:10.1016/j.jep.2014.10.050

Jayakumar, T., Hsieh, C. Y., Lee, J. J., and Sheu, J. R. (2013). Experimental and Clinical Pharmacology of AndrographisPaniculata and its Major Bioactive PhytoconstituentAndrographolide. Evid. Based Complement. Alternat Med. 2013, 846740. doi:10.1155/2013/846740

Calabrese, C., Berman, S. H., Babish, J. G., Ma, X., Shinto, L., Dorr, M., et al. (2000). A Phase I Trial of Andrographolide in HIV Positive Patients and normal Volunteers. Phytother Res. 14, 333–338. doi:10.1002/1099-1573(200008)14:5<333:aid-ptr584>;2-d

Al Rawi, A. A. S., Al Dulaimi, H. S. H., and Al Rawi, M. A. A. (2019). Antiviral Activity of Mangifera Extract on Influenza Virus Cultivated in Different Cell Cultures. J. Pure Appl. Microbiol. 13, 455–458. doi:10.22207/jpam.13.1.50

Wiart, C., Kumar, K., Yusof, M. Y., Hamimah, H., Fauzi, Z. M., and Sulaiman, M. (2005). Antiviral Properties of Ent-LabdeneDiterpenes of AndrographisPaniculataNees, Inhibitors of Herpes Simplex Virus Type 1. Phytother Res. 19, 1069–1070. doi:10.1002/ptr.1765

Lin, T. P., Chen, S. Y., Duh, P. D., Chang, L. K., and Liu, Y. N. (2008). Inhibition of the Epstein-Barr Virus Lytic Cycle by Andrographolide. Biol. Pharm. Bull. 31, 2018–2023. doi:10.1248/bpb.31.2018

Zhou, H. X., Li, R. F., Wang, Y. F., Shen, L. H., Cai, L. H., Weng, Y. C., et al. (2020). Total Alkaloids from Alstoniascholaris Inhibit Influenza a Virus Replication and Lung Immunopathology by Regulating the Innate Immune Response. Phytomedicine 77, 153272. doi:10.1016/j.phymed.2020.153272

Parhira, S., Yang, Z. F., Zhu, G. Y., Chen, Q. L., Zhou, B. X., Wang, Y. T., et al. (2014). In Vitro Anti-Influenza Virus Activities of a New Lignan Glycoside from the Latex of CalotropisGigantea. PLOS ONE 9, e104544. doi:10.1371/journal.pone.0104544

Mpiana, P. T., Ngbolua, K. T., Tshibangu, D. S. T., Kilembe, J. T., Gbolo, B. Z., Mwanangombo, D. T., et al. (2020). Identification of Potential Inhibitors of SARS-CoV-2 Main Protease from Aloe Vera Compounds: A Molecular Docking Study. Chem. Phys. Lett. 754, 137751. doi:10.1016/j.cplett.2020.137751

Kaushik-Basu, N., Bopda-Waffo, A., Talele, T. T., Basu, A., Costa, P. R., Da Silva, A. J., et al. (2008). Identification and Characterization of Coumestans as Novel HCV NS5B Polymerase Inhibitors. Nucleic Acids Res. 36, 1482–1496. doi:10.1093/nar/gkm1178

Zhang, Y. B., Zhang, X. L., Chen, N. H., Wu, Z. N., Ye, W. C., Li, Y. L., et al. (2017). Four Matrine-Based Alkaloids with Antiviral Activities against HBV from the Seeds of SophoraAlopecuroides. Org. Lett. 19, 424–427. doi:10.1021/acs.orglett.6b03685

El-Ansari, M. A., Ibrahim, L. F., and Sharaf, M. (2020). Anti-HIV Activity of Some Natural Phenolics. Herba Pol. 66, 34–43. doi:10.2478/hepo-2020-0010

Samra, R. M., Soliman, A. F., Zaki, A. A., El-Gendy, A. N., Hassan, M. A., and Zaghloul, A. M. (2020). Chemical Composition, Antiviral and Cytotoxic Activities of Essential Oil from CyperusRotundus Growing in Egypt: Evidence from Chemometrics Analysis. J. Essent. Oil Bearing Plants 23, 648–659. doi:10.1080/0972060x.2020.1823892

Sivakrishnan, S., and Swamivelmanickam, M. (2019). A Comprehensive Review of AlbiziaProcera (Roxb.) Benth.-An Update. doi:10.7897/2230-8407.1006193

Panthong, P., Bunluepuech, K., Boonnak, N., Chaniad, P., Pianwanit, S., Wattanapiromsakul, C., et al. (2015). Anti-HIV-1 Integrase Activity and Molecular Docking of Compounds from AlbiziaProcera Bark. Pharm. Biol. 53, 1861–1866. doi:10.3109/13880209.2015.1014568

Bourjot, M., Leyssen, P., Eydoux, C., Guillemot, J. C., Canard, B., Rasoanaivo, P., et al. (2012). Flacourtosides A-F, Phenolic Glycosides Isolated from FlacourtiaRamontchi. J. Nat. Prod. 75, 752–758. doi:10.1021/np300059n

Verma, H., Patil, P. R., Kolhapure, R. M., and Gopalkrishna, V. (2008). Antiviral Activity of the Indian Medicinal Plant Extract SwertiaChirata against Herpes Simplex Viruses: a Study by Iin-Vvitro and Molecular Approach. Indian J. Med. Microbiol. 26, 322–326. doi:10.1016/s0255-0857(21)01807-7

Tshilanda, D. D., Ngoyi, E. M., Kabengele, C. N., Matondo, A., Bongo, G. N., Inkoto, C. L., et al. (2020). Ocimum Species as Potential Bioresources against COVID-19: A Review of Their Phytochemistry and Antiviral Activity. Ijpr, 42–54. doi:10.9734/ijpr/2020/v5i430143

Alzohairy, M. A. (2016). Therapeutics Role of Azadirachtaindica (Neem) and Their Active Constituents in Diseases Prevention and Treatment. Evidence-Based Complement. Altern. Med. 2016, 7382506. doi:10.1155/2016/7382506

Cagno, V., Civra, A., Kumar, R., Pradhan, S., Donalisio, M., Sinha, B. N., et al. (2015). FicusReligiosa L. Bark Extracts Inhibit Human Rhinovirus and Respiratory Syncytial Virus Infection In Vitro. J. Ethnopharmacol. 176, 252–257. doi:10.1016/j.jep.2015.10.042

Tan, W. C., Jaganath, I. B., Manikam, R., and Sekaran, S. D. (2013). Evaluation of Antiviral Activities of Four Local Malaysian Phyllanthus Species against Herpes Simplex Viruses and Possible Antiviral Target. Int. J. Med. Sci. 10, 1817–1829. doi:10.7150/ijms.6902

Priya, N., and SaravanaKumari, P. (2017). Antiviral Activities and Cytotoxicity Assay of Seed Extracts of Piper Longum and Piper Nigrum on Human Cell Lines. Int. J. Pharm. Sci. Rev. Res. 44, 197–202.

Nalanagula, M. (2020). CynodonDactylon against SARS-CoV-2 (COVID-19): Exploratory Considerations for Quick-Fix Pandemic Speed. Project: Cynodondactylon against SARS-CoV-2 (COVID-19). doi:10.13140/RG.2.2.28950.98889

Palshetkar, A., Pathare, N., Jadhav, N., Pawar, M., Wadhwani, A., Kulkarni, S., et al. (2020). In Vitro anti-HIV Activity of Some Indian Medicinal Plant Extracts. BMC Complement. Med. Ther. 20, 69. doi:10.1186/s12906-020-2816-x

Wang, D., Guo, H., Chang, J., Wang, D., Liu, B., Gao, P., et al. (2018). Andrographolide Prevents EV-D68 Replication by Inhibiting the Acidification of Virus-Containing Endocytic Vesicles. Front. Microbiol. 9, 2407. doi:10.3389/fmicb.2018.02407

Nivetha, R., Bhuvaragavan, S., and Janarthanan, S. (2021). Inhibition of Multiple SARS-CoV-2 Roteins by An Antiviral Biomolecule, Seselin from Aeglemarmelos Deciphered Using Molecular Docking Analysis. Research Square. doi:10.21203/

Mamun, M. S. A. (2019). “Tea Production in Bangladesh: From Bush to Mug,” in Agronomic Crops (Singapore: Springer), 441–505. doi:10.1007/978-981-32-9151-5_21

Chang, J. M., Huang, K. L., Yuan, T. T., Lai, Y. K., and Hung, L. M. (2010). The Anti-hepatitis B Virus Activity of Boehmeria Nivea Extract in HBV-Viremia SCID Mice. Evid. Based Complement. Alternat Med. 7, 189–195. doi:10.1093/ecam/nem180

Rathinavel, T., Palanisamy, M., Srinivasan, P., Subramanian, A., and Thangaswamy, S. (2020). Phytochemical 6-Gingerol -A Promising Drug of Choice for COVID-19. Int. J. Adv. Sci. Eng. 06, 1482. doi:10.29294/ijase.6.4.2020.1482-1489

Kim, H. J., Yoo, H. S., Kim, J. C., Park, C. S., Choi, M. S., Kim, M., et al. (2009). Antiviral Effect of Curcuma Longa Linn Extract against Hepatitis B Virus Replication. J. Ethnopharmacol. 124, 189–196. doi:10.1016/j.jep.2009.04.046

Gisondi, P., PIaserico, S., Bordin, C., Alaibac, M., Girolomoni, G., and Naldi, L. (2020). Cutaneous Manifestations of SARS-CoV-2 Infection: a Clinical Update. J. Eur. Acad. Dermatol. Venereol. 34, 2499–2504. doi:10.1111/jdv.16774

Heinrich, M., and Gibbons, S. (2001). Ethnopharmacology in Drug Discovery: an Analysis of its Role and Potential Contribution. J. Pharm. Pharmacol. 53, 425–432. doi:10.1211/0022357011775712

Perera, C., and Efferth, T. (2012). Antiviral Medicinal Herbs and Phytochemicals. J. Pharmacogn 3, 45–48. doi:10.9735/0976-884X.3.1.45-48