Analytical Morphometric Cross-Sectional Analysis of a Dry Femur: A Tertiary Care Analysis

Main Article Content

Mohite S. S.
Shrirang Namdeo Patil
Kadam S. D.


Objective: This study's goal was to analyse a dry femur cross-sectionally using analytical morphometric in order to ascertain its structural and morphological properties.

Methods: A single dry femur was used in this study and was acquired from a tertiary care facility. The greater trochanter, the femoral neck, and the intercondylar notch of the femur were measured using digital callipers at various locations along its length. The femoral neck-shaft angle and the proportion of the length of the femoral neck to the length of the femoral shaft were two parameters that were calculated using these data.

Results: The cross-sectional study showed that while the ratio of the length of the femoral neck to the length of the femoral shaft was somewhat higher than the average value reported in the literature, the femoral neck-shaft angle was within the normal range. Between the greater trochanter and the intercondylar notch, it was discovered that the femur's diameter shrank.

Conclusion: In conclusion, this analytical morphometric cross-sectional analysis sheds light on the morphological and structural traits of a dry femur. The outcomes of this investigation could aid in the detection and management of femoral fractures and other femur-related diseases.

Article Details

How to Cite
S. S., M. ., Patil, S. N. ., & S. D., K. . (2023). Analytical Morphometric Cross-Sectional Analysis of a Dry Femur: A Tertiary Care Analysis. Journal of Coastal Life Medicine, 11(1), 2672–2677. Retrieved from


American Academy of Orthopaedic Surgeons. (2016). Femoral Fractures. Retrieved from

Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet. 1993;341(8837):72-75. doi:10.1016/0140-6736(93)92555-8.

Protzman RR, Burkhalter WE. Femoral-neck fractures in young adults. J Bone Joint Surg Am. 1976;58(5):689-695..

Jämsä T, Jalovaara P, Peng Z, Väänänen HK, Tuukkanen J. Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia. Bone. 1998;23(2):155-161. doi:10.1016/s8756-3282(98)00076-3.

O'brien FJ, Hardiman DA, Hazenberg JG, et al. The behaviour of microcracks in compact bone. Eur J Morphol. 2005;42(1-2):71-79. doi:10.1080/09243860500096131.

Shioi A. Clin Calcium. 2002;12(8):1059-1066..

Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff's law: the remodeling problem. Anat Rec. 1990;226(4):414-422. doi:10.1002/ar.1092260403.

Frost HM. A determinant of bone architecture. The minimum effective strain. Clin Orthop Relat Res. 1983;(175):286-292.

Frost HM. Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod. 1994;64(3):175-188. doi:10.1043/0003-3219(1994)064<0175:WLABSA>2.0.CO;2.

Ruff CB, Larsen CS, Hayes WC. Structural changes in the femur with the transition to agriculture on the Georgia coast. Am J Phys Anthropol. 1984;64(2):125-136. doi:10.1002/ajpa.1330640205.

Keaveny TM, Wachtel EF, Ford CM, Hayes WC. Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. J Biomech. 1994;27(9):1137-1146. doi:10.1016/0021-9290(94)90054-x.

Sansalone V, Naili S, Bousson V, Bergot C, Peyrin F, Zarka J, Laredo JD, Haiat G. Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale. Journal of Biomechanics. 2010 Jul 20;43(10):1857-63.

Chen H, Kubo KY. Bone three-dimensional microstructural features of the common osteoporotic fracture sites. World J Orthop. 2014;5(4):486-495. Published 2014 Sep 18. doi:10.5312/wjo.v5.i4.486.

Hart NH, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton RU. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. J Musculoskelet Neuronal Interact. 2017;17(3):114-139..

Mosekilde L. Age-related changes in vertebral trabecular bone architecture--assessed by a new method. Bone. 1988;9(4):247-250. doi:10.1016/8756-3282(88)90038-5.

Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992;5(4):390-397. doi:10.1097/00002517-199212000-00002.

Lecerf G, Fessy MH, Philippot R, et al. Femoral offset: anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg Res. 2009;95(3):210-219. doi:10.1016/j.otsr.2009.03.010.

Bauer R, Kerschbaumer F, Poisel S, Oberthaler W. The transgluteal approach to the hip joint. Arch Orthop Trauma Surg (1978). 1979;95(1-2):47-49. doi:10.1007/BF00379169.

Cho HJ, Kwak DS, Kim IB. Morphometric Evaluation of Korean Femurs by Geometric Computation: Comparisons of the Sex and the Population. Biomed Res Int. 2015;2015:730538. doi:10.1155/2015/730538.

Verma M, Joshi S, Tuli A, Raheja S, Jain P, Srivastava P. Morphometry of Proximal Femur in Indian Population. J Clin Diagn Res. 2017;11(2):AC01-AC04. doi:10.7860/JCDR/2017/23955.9210.

Reznikov N, Shahar R, Weiner S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014;10(9):3815-3826. doi:10.1016/j.actbio.2014.05.024.

Martin RB, Burr DB. Structure, Function, and Adaptation of Compact Bone. New York: Raven Press; 1989.

Carter DR, Hayes WC. Bone compressive strength: the influence of density and strain rate. Science. 1976;194(4270):1174-1176. doi:10.1126/science.996549.

Xing B, Duan H, Tu C, Chen H, Luo J. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2009;26(5):985-988..

Meijer HJ, Starmans FJ, Steen WH, Bosman F. A three-dimensional, finite-element analysis of bone around dental implants in an edentulous human mandible. Arch Oral Biol. 1993;38(6):491-496. doi:10.1016/0003-9969(93)90185-o.