Somatosensory Networks in Humans and Macaque Monkeys During Rest

Main Article Content

Nargiza Saatova
Pavan Kumar Ediga

Abstract

The brain uses a sophisticated functional network design to integrate and segregate its constituent nodes on different time scales in order to process information. It is crucial to recognise and comprehend the network structure in terms of the underlying anatomical connection and the topographic organisation in order to comprehend the network's function. Here, we demonstrate that the resting-state network for somatosensory region 3b consists of subnetworks that are signatures of specific topographic representations.

Article Details

How to Cite
Saatova, N. ., & Ediga, P. K. . (2023). Somatosensory Networks in Humans and Macaque Monkeys During Rest. Journal of Coastal Life Medicine, 11(1), 2889–2896. Retrieved from https://www.jclmm.com/index.php/journal/article/view/772
Section
Articles

References

Harris, R. E., Clauw, D. J., Scott, D. J., McLean, S. A., Gracely, R. H., & Zubieta, J. K. (2007). Decreased central mu-opioid receptor availability in fibromyalgia. Journal of Neuroscience, 27(37), 10000-10006.

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A., Calhoun, V. D., Corbetta, M., ... & Chang, C. (2013). Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage, 80, 360-378.

Liu, X., de Zwart, J. A., Schölvinck, M. L., Chang, C., & Ye, F. Q. (2018). The relationship between positive and negative BOLD responses in sensory-driven cortical regions. Journal of Neuroscience, 38(46), 9980-9990

Mantini, D., Gerits, A., Nelissen, K., Durand, J. B., Joly, O., Simone, L., ... & Vanduffel, W. (2011). Default mode of brain function in monkeys. Journal of Neuroscience, 31(36), 12954-12962.

Mars, R. B., Neubert, F. X., Noonan, M. P., Sallet, J., Toni, I., & Rushworth, M. F. (2012). On the relationship between the “default mode network” and the “social brain”. Frontiers in Human Neuroscience, 6, 189.

Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45-57.

Assaf, M. et al. Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 53, 247–256 (2010).

Bai, F. et al. Abnormal resting-state functional connectivity of posterior cingulate cortex in amnestic type mild cognitive impairment. Brain Res 1302, 167–174 (2009).

Camchong, J., Macdonald, A. W., 3rd, Bell, C., Mueller, B. A. & Lim K. O. Altered Functional and Anatomical Connectivity in Schizophrenia. Schizophr Bull (2009).

Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

Cauda, F. et al. Disrupted intrinsic functional connectivity in the vegetative state. J Neurol Neurosurg Psychiatry 80, 429–431 (2009).

Fingelkurts, A. A. & Kahkonen, S. Functional connectivity in the brain–is it an elusive concept? Neurosci Biobehav Rev 28, 827–836 (2005).

Fox, M. D., Halko, M. A., Eldaief, M. C. & Pascual-Leone, A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage 62, 2232–2243 (2012).

Beric, A. Transcranial electrical and magnetic stimulation. Adv Neurol 63, 29–42 (1993).

Mills, K. R., Murray, N. M. & Hess, C. W. Magnetic and electrical transcranial brain stimulation: physiological mechanisms and clinical applications. Neurosurgery 20, 164–168 (1987).

Turi, Z., Paulus, W. & Antal, A. Functional neuroimaging and transcranial electrical stimulation. Clin EEG Neurosci 43, 200–208 (2012).

Saiote, C., Turi, Z., Paulus, W. & Antal, A. Combining functional magnetic resonance imaging with transcranial electrical stimulation. Front Hum Neurosci 7, 435 (2013).