Coastal Critical Care Patients: Effect of Manual Chest Compression to Decrease Lung Disability Among Vulnerable Patients on Mechanical Ventilator-

Main Article Content

Mohamed Salahudeen M.A
Ezhumalai.G
Shanmugananth.E
S.Parthasarathy

Abstract

Background: Patients with invasive mechanical ventilation are susceptible to a number of respiratory issues, with secretory retention representing one of the most common. Clinically, secretion buildup may result in bronchial blockage and deteriorating gas exchange, and in some extreme circumstances, may impair ventilator support, extending the time required for mechanical ventilation and increasing death. Re-expansion methods like the Manual Chest Compression Maneuver can be employed to stop this, This technique supports the re-expansion of collapsed alveoli. Methods: total of 15 patient receiving Mechanical Ventilator support in an intensive care unit were included in this study with signs of hypoventilation, hypo expansion, or atelectasis were eligible to receive the Manual Chest Compression maneuver. Manual Chest Compression maneuver were performed for 10 minutes, after the maneuver the outcomes such as Tidal Volume, Minute ventilation, Fraction of inspired oxygen are recorded. Result: Manual Chest Compression Maneuver applied for the patients had positive effect on improving the patients Tidal Volume, Minute ventilation, Fraction of inspired oxygen. Based on the statistical analysis of pre and post interventions of the Manual Chest Compression Maneuver the statistical difference is P<0.05. Conclusion: In patients admitted in a coastal hospital, , Manual Chest Compression Maneuver had positive effect on patients’ Tidal Volume, Minute ventilation, Fraction of inspired oxygen. This effect may help the patient in early weaning off from the mechanical ventilator.

Article Details

How to Cite
Mohamed Salahudeen M.A, Ezhumalai.G, Shanmugananth.E, & S.Parthasarathy. (2023). Coastal Critical Care Patients: Effect of Manual Chest Compression to Decrease Lung Disability Among Vulnerable Patients on Mechanical Ventilator- . Journal of Coastal Life Medicine, 11(2), 227–235. Retrieved from https://www.jclmm.com/index.php/journal/article/view/948
Section
Articles

References

Biarzi. K. F. Severo. .S B. & Baptistella, A. R. (2022). Immediate and long-term effects fo manual chest compression and decompression maneuver on ventilation. PhysiotherapyResearch International, 2714), e1962. patients receiving invasive mechanical org/10.1002/pri.1962

Dean R, Hess Robert et al 2014, Essentials Of Mechanical Ventilation. Third edition, chapter 1. Physiological Effects of Mechanical Ventilation, Page: 1- 11.

Bousarri MP, Shirvani Y, Agha-Hassan-Kashani S, Nasab NM. The effect of expiratory rib cage compression before endotracheal suctioning on the vital signs in patients under mechanical ventilation. Iranian Journal of Nursing and Midwifery Research 2014;19:285-9.

Unoki T, Kawasaki Y, Mizutani T, Fujino Y, Yanagisawa Y, Ishimatsu S, et al. Effects of expiratory rib- cage compression on oxygenation, ventilation, and airway-secretion removal in patients receiving mechanical ventilation. Respir Care 2005;50:1430-7.

Guimarães FS, Lopes AJ, Constantino SS, Lima JC, Canuto P, de Menezes SL. Expiratory rib cage Compression in mechanically ventilated subjects: a randomized crossover trial [corrected]. Respiratory Care. 2014;59(5):678-85. Erratum in Respir Care. 2014;59(7):e107.

American Association for Respiratory Care. (2010). AARC clinical practice guidelines. Endotracheal suctioning of mechanically ventilated patients with artificial airways 2010. Respiratory Care, 55(6), 758-764.

Andersen, J.. Olesen, B., & Eikhard, B. (1980). Periodic continuous positive airway pressure, CPAP, by mask in the treatment of atelectasis. European Journal of Respiratory Diseases, 61, 20-25.

Ceriana, P., Vitecca, M., Carlucci, A., Paneroni, M., Pisani, L., & Nava, 5. (2017) Changes of respiratory mechanics in COPD patients from stable state to acute exacerbations with respiratory failure. COPD: Journal of Chronic Obstructive Pulmonary Disease, 14(2), 150-155.

Cetti, E. J. (2006). Collateral ventilation. Thorax, 61(5), 371-373.

Chen, Y.-H. Yeh, M.-C., Hu, H.-C., Lee, C.-S., Li, L.-F., Chen, N.-H., Huang, C.- C., & Kao, K.-C. (2016). Effects of lung expansion therapy on lung function in patients with prolonged mechanical ventilation. Canadian R spiratory Journal, 2016, 1-7.

Costa, D. (1999). Fisioterapia respiratória básica. Atheneu. Damasceno, M. P. C. D., David, C. M. N., Souza, P. C. S. P., Chiavone, P. A., Cardoso, L. T. Q., Amaral, J. L. G., & Luiz, R. R. (2006). Ventilação mecânica no Brasil: Aspectos epidemiológicos. Revista Brasileira de Terania Intensiva, 18(3), 219-228.

cla Rosa. F. K. Roese, C. A., Savi, A., Dias, A. S., & Monteiro, M. B. (2007). Comportamento da mecânica pulmonar após a aplicação de proto-colo de fisioterapia respiratória e aspiração traqueal em pacientes com ventilação mecânica invasiva. Revista Brasileira de Terapia Intensiva, 19(2), 170-175.

Gelb, A., Southorn, P., Didier, E. P., & Rehder, K. (1983). Sedation and respiratory mechanics in man. British Journal of Anaesthesia, 55(9).

Galigher, E. C., Dres, M., Fan, E., Rubenfeld, G. D., Scales, D. C., Herridge, M. S., & Ferguson, N. D. (2018). Mechanical ventilation-induced diaphragm atrophy strongly impacts clinical outcomes. American Journal of Respiratory and Critical Care Medicine, 197(2), 204-213.

Hermans, G., & Van den Berghe, G. (2015). Clinical review: intensive care. 1186/13054-015-0993-7 unit acquired weakness. Critical Care, 19(1), 274.

Kreider, M. E., & Lipson, D. A. (2003). Bronchoscopy for atelectasis in the ICU. Chest, 124(1), 344-350.

Leme, F., Damasceno, M., & Luque, A. (2006). Fisioterapia em UTI: Atheneu: Li, J., Luo, Z., Li, X., Huang, Z., Han, J., Li, Z., & Chen, H. (2017). Effect of different transpulmonary pressures guided mechanical ventilation on respiratory and hemodynamics of patients with ARDS: A prospective randomized controlled trial. Zhonghua Wei Zhong Big Ji Jiu Yi Xue, 29(1), 39-44.

Maa, S.-H., Hung, T.-J., Hsu, K.-H., Hsieh, Y.-I., Wang, K.-Y., Wang. C.-H., & Lin, H.-C. (2005). Manual hyperinflation Improves alveolar recruitment in difficult-to-wean patients. Chest, 128(4), 2714-2721.

Martin, R. J., Rogers, R. M., & Gray, B. A. (1980). Mechanical aids to lung expansion. The physiologic basis for the use of mechanical aids to lung expansion. American Review of Respiratory Disease, 122(5 Pt 2), 105-107.

Sant'Annade, M.. Jr., Carvalhal, R. F., Oliveirada, F. D. F. B. de. Zin, W. A.,Lopes, A. J., Lugon, J. R., & Guimarães, F. S. (2019). Mecânica respiratória de pacientes com obesidade mórbida. Jornal Brasileiro de Pneumologia, 45(5).

Santini, A, Mauri, T., Dalla Corte, F., Spinelli, E., & Pesenti, A. (2019). EFfects of inspiratory flow on lung stress, pendelluft, and ventilation heterogeneity in ARDS: A physiological study. Critical Care, 23(1), 369.

Sarmento, G., Veja, J., & Lopes, N. (2006). Fisioterapia em UTI. Atheneu.

Scalan, C., Wilkiris, R., & Stoller, J. (2000). Fundamentos da terapia respiratória de Egan. Manole.

Siafakas, N. M., Mitrouska, I., Bouros, D., & Georgopoulos, D. (1999). Surgery and the respiratory muscles. Thorax, 54(5), 458-465.

Singer, M., Vermaat, J., Hali, G., Latter, G., & Patel, M. (1994). Hemody-namic effects of manual hyperinflation in critically ill mechanically ventilated patients. Chest, 106(4), 1182-1187.

Stiller, K., Geake, T., Taylor, J., Grant, R., & Hall, B. (1990). Acute lobar atelectasis. Chest, 98(6), 1336-1340.

Della, V. F., Oliveira, R. A. R. A., & Dragosavac, D. (2012). Effects of manual chest compression and decompression maneuver on lung volumes, capnography and pulse oximetry in patients receiving mechanical ventilation. Brazilian Journal of Physical Therapy, 16(5), 354-359.

Willians, J., Tierney, D., & Parker, H. (1966). Surface forces in the lung, atelectasis, and transpulmonary pressure. Journal of Applied Physiology, 21, 819-827.

Unoki T, Mizutani T, Toyooka H. Effects of expiratory rib cage compression combined with endotracheal suctioning on gas exchange in mechanically ventilated rabbits with induced atelectasis. Respir Care 2004;49(8):896-901.

Akira O, H Sakuramoto, T Unoki, Effects of Manual Rib Cage Compressions on Mucus Clearance in Mechanically Ventilated Pigs. Respiratory Care 2020 Vol 65 No 8.

Ana C, O Oliveira, D M Lorena, L Gomes, B Amaral, M S Volpe. Effects of manual chest compression on expiratory flow bias during the positive end-expiratory pressure–zero end expiratory pressure maneuver in patients on mechanical ventilation. J Bras Pneumol. 2019;45(1):e20180058.

L Bastia , E Rezoagli, M Guarnieri . External chest-wall compression in prolonged COVID-19 ARDS with low-compliance. Bastia et al. Annals of Intensive Care (2022) 12:35.

D. Selsby, J. G. Jones. Some Physiological And Clinical Aspects Of Chest Physiotherapy. British Journal of Anaesthesia 1990; 64: 621-631.

G. Ntoumenopoulos J. J. Presneill M. McElholum J. F. Cade. Chest physiotherapy for the prevention of ventilator-associated pneumonia. Intensive Care Med (2002) 28:850–856

Lara Shekerdemian, Desmond Bohn. Cardiovascular eVects of mechanical ventilation. Arch Dis Child (1999);80:475–480.

Ewan C. Goligher, Eddy Fan, Margaret S. Herridge. Evolution of Diaphragm Thickness during Mechanical Ventilation Impact of Inspiratory Effort. American Journal of Respiratory and Critical Care Medicine Volume 192 Number 9 (2015).

Ewan C. Goligher, Eddy Fan, Margaret S. Herridge. Mechanical Ventilation–induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes. American Journal of Respiratory and Critical Care Medicine Volume 197 Number 2, (2018).

Juliana Savini Wey Berti, Elisiane Tonon, Carlos Fernando Ronchi, Manual hyperinflation combined with expiratory rib cage compression for reduction of length of ICU stay in critically ill patients on mechanical ventilation. J Bras Pneumol. 2012; 38(4):477-486.

E S, Tsmo ZZ, K R, Doshi N, S GN, S Parthasarathy. Effects of Various Degrees of Semi-Recumbent Positioning in Prevention of Ventilator-Associated Pneumonia: Life Sciences-Health. Int J Life Sci Pharm Res [Internet]. 2022 Oct. 17 [cited 2023 May 5];12(SP25):L73-L78. https://www.ijlpr.com/index.php/journal/article/view/1432.

Charles MP, Kali A, Easow JM, Joseph NM, Ravishankar M, Srinivasan S et al. Ventilator-associated pneumonia. Australas Med J. 2014 Aug 31;7(8):334-44. doi: 10.4066/AMJ.2014.2105, PMID 25279009.