Biosynthesis and Delineate Industrially Prime Exopolysaccharide (MYCtPs) from Marine Yeast Candida Tropicalis (MYCt).

Main Article Content

V. Sree Sountharavallee
M. Suresh Kumar
K. Kathiresan
D. Kavitha

Abstract

The purpose of this research is biosynthesis and characterize the exopolysaccharide extracted from marine yeast isolated from marine soil for manipulate the environmental stress in industrial applications. Biosynthesis of exopolysaccharide (MYCtPs) derived by isolated strain Candida tropicalis (MYCt)MCAS01 and delineation of their physiochemical, biochemical, and microbial characteristics and composition. Thermogravimetric analysis confirmed the thermal stability of the MYCtPs along with the reaction kinetics. 13 C-NMR and GC-MS analysis demonstrated a complex and heterogeneous nature of the MYCtPs. FT-IR, EDAX, and UV spectrum analysis revealed the presence of functional groups such as carboxyl, carbonyl, and ester. The X-ray powder diffraction (XRD) and the zeta potential exhibited the stability of the MYCtPs. The SEM micrograph demonstrated the size of (MYCtPs) is 1264.354 m (d0.5). Thus, study reveals that marine yeast produces novel polysaccharides of potential for applications in propitious bio sectors.

Article Details

How to Cite
V. Sree Sountharavallee, M. Suresh Kumar, K. Kathiresan, & D. Kavitha. (2023). Biosynthesis and Delineate Industrially Prime Exopolysaccharide (MYCtPs) from Marine Yeast Candida Tropicalis (MYCt). Journal of Coastal Life Medicine, 11(2), 275–285. Retrieved from https://www.jclmm.com/index.php/journal/article/view/962
Section
Articles

References

Zaky, A. S., Tucker, G. A., Daw, Z. Y., & Du, C. (2014). Marine yeast isolation and industrial application. FEMS Yeast Research, 14(6), 813–825. https://doi.org/10.1111/1567-1364.12158

Anwesha, S., & Rao, K. B. (2016). Marine yeast: A potential candidate for biotechnological applications–A review. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 18(3), 627–634.

Zaky, A. S., Greetham, D., Louis, E. J., Tucker, G. A., & Du, C. (2016). A new isolation and evaluation method for marine-derived yeast spp. with potential applications in industrial biotechnology. Journal of Microbiology and Biotechnology, 26(11), 1891–1907. https://doi.org/10.4014/jmb.1605.05074

Yadav, P., Yadav, H., Shah, V. G., Shah, G., & Dhaka, G. (2015). Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. Journal of Clinical and Diagnostic Research, 9(9), ZE21–ZE25. https://doi.org/10.7860/JCDR/2015/13907.6565

Van Bogaert, I. N., Maeseneire, S. L. D., & Vandamme, E. J. (2009). Extracellular polysaccharides produced by yeasts and yeast-like fungi. In Yeast biotechnology: Diversity and applications (pp. 651–671). Springer.

Costa, O. Y. A., Raaijmakers, J. M., & Kuramae, E. E. (2018). Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Frontiers in Microbiology, 9, 1636. https://doi.org/10.3389/fmicb.2018.01636

Shi, L. (2016). Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. International Journal of Biological Macromolecules, 92, 37–48. https://doi.org/10.1016/j.ijbiomac.2016.06.100

Saha, I., Datta, S., & Biswas, D. (2020). Exploring the role of bacterial extracellular polymeric substances for sustainable development in agriculture. Current Microbiology, 77(11), 3224–3239. https://doi.org/10.1007/s00284-020-02169-y

Masuda, K., Guo, X. F., Uryu, N., Hagiwara, T., & Watabe, S. (2008). Isolation of marine yeasts collected from the Pacifific Ocean showing a high production of gamma-aminobutyric acid. Bioscience, Biotechnology, and Biochemistry, 72(12), 3265–3272. https://doi.org/10.1271/bbb.80544

Qvirist, L. A., De Filippo, C., Strati, F., Stefanini, I., Sordo, M., Andlid, T., Felis, G. E., Mattarelli, P., & Cavalieri, D. (2016). Isolation, Identification and Characterization of Yeasts from Fermented Goat Milk of the Yaghnob Valley in Tajikistan, sec-food microbiology.

Ben Ali, W., Chaduli, D., Navarro, D., Lechat, C., Turbé-Doan, A., Bertrand, E., & Mechichi, T. (2020). Screening of five marine-derived fungal strains for their potential to produce oxidases with laccase activities suitable for biotechnological applications. BMC Biotechnology, 20(1), 1–13.

Ragavan, M. L., & Das, N. (2019). Optimization of exopolysaccharide production by probiotic yeast Lipomyces starkeyi VIT-MN03 using response surface methodology and its applications. Annals of Microbiology, 69(5), 515–530. https://doi.org/10.1007/s13213-019-1440-9

Kharat, P. P., Yadav, S. R., Ragavan, M. L., & Das, N. (2018). Isolation and characterization of exopolysaccharides from yeast isolates. Research Journal of Pharmacy and Technology, 11(2), 537–542. https://doi.org/10.5958/0974-360X.2018.00100.2

Amer, M. S., Zaghloul, E. H., & Ibrahim, M. I. (2020). Characterization of exopolysaccharide produced from marine-derived Aspergillus terreus SEI with prominent biological activities. Egyptian Journal of Aquatic Research, 46(4), 363369.

Prakash Shyam, K. P., Rajkumar, P., Ramya, V., Sivabalan, S., Kings, A. J., & Miriam, L. R. M. (2021). Exopolysaccharide production by optimized medium using novel marine Enterobacter cloacae MBB8 isolate and its antioxidant potential. Carbohydrate Polymer Technologies and Applications, 2, 100070. https://doi.org/10.1016/j.carpta.2021.100070

Seviour, T., Lambert, L. K., Pijuan, M., & Yuan, Z. (2010). Structural determination of a key exopolysaccharide in mixed culture aerobic sludge granules using NMR spectroscopy. Environmental Science and Technology, 44(23), 8964–8970. https://doi.org/10.1021/es102658s

Chambi, D., Romero-Soto, L., Villca, R., Orozco-Gutiérrez, F., Vega-Baudrit, J., Quillaguamán, J., Hatti-Kaul, R., Martín, C., & Carrasco, C. (2021). Exopolysaccharides production by cultivating a bacterial isolate from the hypersaline environment of Salar de Uyuni (Bolivia) in pretreatment liquids of steam-exploded quinoa stalks and enzymatic hydrolysates of curupaú sawdust. Fermentation, 7(1), 33. https://doi.org/10.3390/fermentation7010033

Michel, Dubios, K. A., Hamilton, J. K., Rebers, P. A., Smith, F., . . . Smith, F.,J.K.Hamilton,P.A.Rebers and frd.smith. (1956) Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017

Imran, M. Y. M., Reehana, N., Jayaraj, K. A., Ahamed, A. A. P., Dhanasekaran, D., Thajuddin, N., Alharbi, N. S., & Muralitharan, G. (2016). Statistical optimization of exopolysaccharide production by Lactobacillus plantarum NTMI05 and NTMI20. International Journal of Biological Macromolecules, 93(A), 731–745. https://doi.org/10.1016/j.ijbiomac.2016.09.007

Gudowska-Nowak, E., Lindenberg, K., & Metzler, R. (2017). Preface: Marian Smoluchowski’s 1916 paper a century of inspiration. Journal of Physics. Part A, 50(38). https://doi.org/10.1088/1751-8121/aa8529

Kutty, S. N., & Philip, R. (2008). Marine yeasts-a review. Yeast. Wiley Interscience, 25(7), 465–483. https://doi.org/10.1002/yea.1599

Ballou, C. E. (1974). Some aspects of the structure, immuno chemistry and genetic control of yeast mannans. Advances in Enzymology and Related Areas of Molecular Biology, 40, 239–270.

Mubarak, H. M., & Amer, S. M. (2013). Purification and characterization of exopolysaccharides (Eps) extracted from Saccharomyces cerevisiae. Egyptian Journal of Experimental Biology (Botany), 9(2), 249–258.

Mishra, A., & Jha, B. (2013). Microbial exopolysaccharides. Prokaryotes, 4, 179192.

Orsod, M., Joseph, M., & Huyop, F. (2012). Characterization of exopolysaccharides produced by Bacillus cereus and Brachybacterium sp. isolated from Asian sea bass (Lates calcarifer). Malaysian Journal of Microbiology, 8(3), 170–174.

Samrot, A. V., Angalene, J. L. A., Roshini, S. M., Raji, P., Stefi, S. M., Preethi, R., Selvarani, A. J., & Madankumar, A. (2019). Bioactivity and heavy metal removal using plant gum mediated green synthesized silver nanoparticles. Journal of Cluster Science, 30(6), 1599–1610. https://doi.org/10.1007/s10876-019-01602-y.